6 resultados para INDEPENDENT ACTIVATION
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
Recent evidence suggests that in addition to their well known stimulatory properties, dendritic cells (DCs) may play a major role in peripheral tolerance. It is still unclear whether a distinct subtype or activation status of DC exists that promotes the differentiation of suppressor rather than effector T cells from naive precursors. In this work, we tested whether the naturally occurring CD4+ CD25+ regulatory T cells (Treg) may control immune responses induced by DCs in vivo. We characterized the immune response induced by adoptive transfer of antigen-pulsed mature DCs into mice depleted or not of CD25+ cells. We found that the development of major histocompatibility complex class I and II-restricted interferon gamma-producing cells was consistently enhanced in the absence of Treg. By contrast, T helper cell (Th)2 priming was down-regulated in the same conditions. This regulation was independent of interleukin 10 production by DCs. Of note, splenic DCs incubated in vitro with Toll-like receptor ligands (lipopolysaccharide or CpG) activated immune responses that remained sensitive to Treg function. Our data further show that mature DCs induced higher cytotoxic activity in CD25-depleted recipients as compared with untreated hosts. We conclude that Treg naturally exert a negative feedback mechanism on Th1-type responses induced by mature DCs in vivo.
Resumo:
Transactivation is a process whereby stimulation of G-protein-coupled receptors (GPCR) activates signaling from receptors tyrosine kinase (RTK). In neuronal cells, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) acting through the GPCR VPAC-1 exerts trophic effects by transactivating the RTK TrkA receptor for the nerve growth factor (NGF). Both PACAP and NGF have pro-inflammatory activities on monocytes. We have tested the possibility that in monocytes, PACAP, as reported in neuronal cells, uses NGF/TrkA signaling pathway. In these cells, PACAP increases TrkA tyrosine phosphorylations through a PI-3kinase dependent but phospholipase C independent pathway. K252a, an inhibitor of TrkA decreases PACAP-induced Akt and ERK phosphorylation and calcium mobilisation resulting in decreases in intracellular H2O2 production and membrane upregulation of CD11b expression, both functions being inhibited after anti-NGF or anti-TrkA antibody treatment. K252a also inhibits PACAP-associated NF-KB activity. Monocytes increase in NGF production is seen after micromolar PACAP exposure while nanomolar treatment which desensitizes cells to high dose of PACAP prevents PACAP-induced TrkA phosphorylation, H2O2 production and CD11b expression. Finally, NGF-dependent ERK activation and H2O2 production is pertussis toxin sensitive. Altogether these data indicate that in PACAP-activated monocytes some pro-inflammatory activities occur through transactivation mechanisms involving VPAC-1, NGF and TrkA-associated tyrosine kinase activity.
Resumo:
In contrast to adults, Helicobacter pylori gastritis in children is reported as milder and ulcer disease as uncommon, but unequivocal data are lacking.
Resumo:
info:eu-repo/semantics/nonPublished
Resumo:
BACKGROUND: Positive skin prick tests (SPT) for food allergens and specific IgE (sIgE) in serum indicate sensitization but do not enable distinction between sensitized but tolerant and clinically allergic patients. OBJECTIVE: Herein, we evaluate the clinical relevance of basophil activation tests (BATs) for peanut or egg allergy diagnosis. METHODS: Thirty-two peanut-allergic, 14 peanut-sensitized (sIgE(+) and/or SPT(+) to peanuts) but tolerant children and 29 controls with no history of an adverse reaction to peanuts were included. Similarly, 31 egg-allergic, 14 egg-sensitized children (sIgE(+) and/or SPT(+) to egg white) and 22 controls were studied. Flow cytometric analysis of CD63 expression or CD203c upregulation on basophils and the production of leukotrienes (LT) were performed in response to an in vitro crude peanut extract or ovalbumin (OVA) challenge. RESULTS: After in vitro peanut challenge, the basophils from peanut-allergic children showed significantly higher levels of activation than those from controls (P<0.001). After OVA challenge, a similar distinction (P<0.001) was observed between egg-allergics and controls. Interestingly, the majority of egg- or peanut-sensitized children failed to activate basophils, respectively, in response to OVA and peanut challenge. The sensitivity of the CD63, CD203c and LT assay was 86.7%, 89.5% and 76.0% with a specificity of 94.1%, 97.1% and 94.6% for peanut allergy diagnosis. The corresponding performances of BATs applied to egg allergy diagnosis were 88.9%, 62.5% and 77.8% for the sensitivity and 100%, 96.4% and 96.4% for the specificity. CONCLUSION: Neither conventional tests nor BATs are sensitive and specific enough to predict food allergy accurately. However, BATs may helpfully complete conventional tests, especially SPT, allowing improved discrimination between allergic and non-allergic individuals.
Resumo:
Studies [Zhou, D. Chen, L.-M. Hernandez, L. Shears, S.B. and Galán, J.E. (2001) A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host-cell actin cytoskeleton rearrangements and bacterial internalization. Mol. Microbiol. 39, 248-259] with engineered Salmonella mutants showed that deletion of SopE attenuated the pathogen's ability to deplete host-cell InsP5 and remodel the cytoskeleton. We pursued these observations: In SopE-transfected host-cells, membrane ruffling was induced, but SopE did not dephosphorylate InsP5, nor did it recruit PTEN (a cytosolic InsP5 phosphatase) for this task. However, PTEN strengthened SopE-mediated membrane ruffling. We conclude SopE promotes host-cell InsP5 hydrolysis only with the assistance of other Salmonella proteins. Our demonstration that Salmonella-mediated cytoskeletal modifications are independent of inositolphosphates will focus future studies on elucidating alternate pathogenic consequences of InsP5 metabolism, including ion channel conductance and apoptosis.