3 resultados para Genetics translocation
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
We studied the cells from three selected patients with Ph-chromosome-negative chronic myeloid leukemia (CML) by Southern blotting, polymerase chain reaction, and in situ hybridization of informative probes to metaphase chromosomes. All three patients had rearrangement of M-BCR sequences in the BCR gene and expression of one or other of the mRNA species characteristic of Ph-positive CML. Leukemic metaphases studied after trypsin-Giemsa banding were indistinguishable from normal. The ABL probe localized both to chromosome 9 and 22 in each case. A probe containing 3' M-BCR sequences localized only to chromosome 22, and not to chromosome 9 as would be expected in Ph-positive CML. Two new probes that recognize different polymorphic regions distal to the ABL gene on chromosome 9 in normal subjects localized exclusively to chromosome 9 in two patients and to both chromosomes 9 and 22 in one patient. These results show that Ph-negative CML with BCR rearrangement is associated with insertion of a variable quantity of chromosome 9 derived material into chromosome 22q11; there is no evidence for reciprocal translocation of material from chromosome 22 to chromosome 9.
Resumo:
The E1AF protein belongs to the family of Ets transcription factors and is involved in the regulation of metastasis gene expression. It has recently been reported in an undifferentiated child sarcoma that part of this gene could be fused by translocation to the ews gene. We show here that the human e1af gene, which is located in the q21 region of chromosome 17, is organized in 13 exons distributed along 19 kb of genomic DNA. Its two main functional domains, the acidic domain and the DNA-binding ETS domain, are each encoded by three different exons. The 3'-untranslated region of e1af is 0.7 kb. The 5'-untranslated region is about 0.3 kb and is composed of a first exon upstream from the exon containing the first methionine. These data could possibly accelerate an understanding of the molecular basis of putative inherited diseases linked to E1AF. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
SWAP-70-like adapter of T cells (SLAT) is a novel guanine nucleotide exchange factor for Rho GTPases that is upregulated in Th2 cells, but whose physiological function is unclear. We show that SLAT-/- mice displayed a developmental defect at one of the earliest stages of thymocyte differentiation, the double-negative 1 (DN1) stage, leading to decreased peripheral T cell numbers. SLAT-/- peripheral CD4+ T cells demonstrated impaired TCR/CD28-induced proliferation and IL-2 production, which was rescued by the addition of exogenous IL-2. Importantly, SLAT-/- mice were grossly impaired in their ability to mount not only Th2, but also Th1-mediated lung inflammatory responses, as evidenced by reduced airway neutrophilia and eosinophilia, respectively. Levels of Th1 and Th2 cytokine in the lungs were also markedly reduced, paralleling the reduction in pulmonary inflammation. This defect in mounting Th1/Th2 responses, which was also evident in vitro, was traced to a severe reduction in Ca2+ mobilization from ER stores, which consequently led to defective TCR/CD28-induced translocation of nuclear factor of activated T cells 1/2 (NFATc1/2). Thus, SLAT is required for thymic DN1 cell expansion, T cell activation, and Th1 and Th2 inflammatory responses.