4 resultados para Deficient respiratory mutants

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Specific anti-polysaccharide antibody deficiency (SPAD) is an immune disorder. Diagnostic criteria have not yet been defined clearly. One hundred and seventy-six children evaluated for recurrent respiratory tract infections were analysed retrospectively. For each subject, specific anti-pneumococcal antibodies had been measured with two enzyme-linked immunosorbent assays (ELISAs), one overall assay (OA) using the 23-valent pneumococcal polysaccharide vaccine (23-PPSV) as detecting antigen and the other purified pneumococcal polysaccharide serotypes (serotype-specific assay, SSA) (serotypes 14, 19F and 23F). Antibody levels were measured before (n = 176) and after (n = 93) immunization with the 23-PPSV. Before immunization, low titres were found for 138 of 176 patients (78%) with OA, compared to 20 of 176 patients (11%) with the SSA. We found a significant correlation between OA and SSA results. After immunization, 88% (71 of 81) of the patients considered as responders in the OA test were also responders in the SSA; 93% (71 of 76) of the patients classified as responders according to the SSA were also responders in the OA. SPAD was diagnosed in 8% (seven of 93) of patients on the basis of the absence of response in both tests. Thus, we propose to use OA as a screening test for SPAD before 23-PPSV immunization. After immunization, SSA should be used only in case of a low response in OA. Only the absence of or a very low antibody response detected by both tests should be used as a diagnostic criterion for SPAD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After becoming competent for resuming meiosis, fully developed mammalian oocytes are maintained arrested in prophase I until ovulation is triggered by the luteotropin surge. Meiotic pause has been shown to depend critically on maintenance of cAMP level in the oocyte and was recently attributed to the constitutive Gs (the heterotrimeric GTP-binding protein that activates adenylyl cyclase) signaling activity of the G protein-coupled receptor GPR3. Here we show that mice deficient for Gpr3 are unexpectedly fertile but display progressive reduction in litter size despite stable age-independent alteration of meiotic pause. Detailed analysis of the phenotype confirms premature resumption of meiosis, in vivo, in about one-third of antral follicles from Gpr3-/- females, independently of their age. In contrast, in aging mice, absence of GPR3 leads to severe reduction of fertility, which manifests by production of an increasing number of nondeveloping early embryos upon spontaneous ovulation and massive amounts of fragmented oocytes after superovulation. Severe worsening of the phenotype in older animals points to an additional role of GPR3 related to protection (or rescue) of oocytes from aging. Gpr3-defective mice may constitute a relevant model of premature ovarian failure due to early oocyte aging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously, we and others have shown that MHC class-II deficient humans have greatly reduced numbers of CD4+CD8- peripheral T cells. These type-III Bare Lymphocyte Syndrome patients lack MHC class-II and have an impaired MHC class-I antigen expression. In this study, we analyzed the impact of the MHC class-II deficient environment on the TCR V-gene segment usage in this reduced CD4+CD8- T-cell subset. For these studies, we employed TcR V-region-specific monoclonal antibodies (mAbs) and a semiquantitative PCR technique with V alpha and V beta amplimers, specific for each of the most known V alpha- and V beta-gene region families. The results of our studies demonstrate that some of the V alpha-gene segments are used less frequent in the CD4+CD8- T-cell subset of the patient, whereas the majority of the TCR V alpha- and V beta-gene segments investigated were used with similar frequencies in both subsets in the type-III Bare Lymphocyte Syndrome patient compared to healthy control family members. Interestingly, the frequency of TcR V alpha 12 transcripts was greatly diminished in the patient, both in the CD4+CD8- as well as in the CD4-CD8+ compartment, whereas this gene segment could easily be detected in the healthy family controls. On the basis of the results obtained in this study, it is concluded that within the reduced CD4+CD8- T-cell subset of this patient, most of the TCR V-gene segments tested for are employed. However, a skewing in the usage frequency of some of the V alpha-gene segments toward the CD4-CD8+ T-cell subset was noticeable in the MHC class-II deficient patient that differed from those observed in the healthy family controls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunoglobulin superfamily (IgSF) domains are conserved structures present in many proteins in eukaryotes and prokaryotes. These domains are well-capable of facilitating sequence variation, which is most clearly illustrated by the variable regions in immunoglobulins (Igs) and T cell receptors (TRs). We studied an antibody-deficient patient suffering from recurrent respiratory infections and with impaired antibody responses to vaccinations. Patient's B cells showed impaired Ca(2+) influx upon stimulation with anti-IgM and lacked detectable CD19 membrane expression. CD19 sequence analysis revealed a homozygous missense mutation resulting in a tryptophan to cystein (W52C) amino acid change. The affected tryptophan is CONSERVED-TRP 41 located on the C-strand of the first extracellular IgSF domain of CD19 and was found to be highly conserved, not only in mammalian CD19 proteins, but in nearly all characterized IgSF domains. Furthermore, the tryptophan is present in all variable domains in Ig and TR and was not mutated in 117 Ig class-switched transcripts of B cells from controls, despite an overall 10% amino acid change frequency. In vitro complementation studies and CD19 western blotting of patient's B cells demonstrated that the mutated protein remained immaturely glycosylated. This first missense mutation resulting in a CD19 deficiency demonstrates the crucial role of a highly conserved tryptophan in proper folding or stability of IgSF domains.