6 resultados para Atypical lobular hyperplasia

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors analyzed several cytomorphonuclear parameters related to chromatin distribution and DNA ploidy in typical and atypical carcinoids and in small cell lung cancers. Nuclear measurements and analysis were performed with a SAMBA 200 (TITN, Grenoble, France) cell image processor with software allowing the discrimination of parameters computed on cytospin preparations of Feulgen-stained nuclei extracted from deparaffinized tumor tissues. The authors' results indicate a significant increase in DNA content--assessed by integrated optical density (IOD)--from typical carcinoids to small cell lung carcinomas, with atypical carcinoids showing an intermediate value. Parameters related to hyperchromatism (short and long run length and variance of optical density) also characterize the atypical carcinoids as being intermediate between typical carcinoids and small cell lung cancers. The systematic measurement of these cytomorphonuclear parameters seems to define an objective, reproducible "scale" of differentiation that helps to define the atypical carcinoid and may be of value in establishing cytologic criteria for differential diagnosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the pattern of BCR involvement in 52 patients with chronic myeloid leukemia by Southern blotting. Of 33 Philadelphia (Ph)-positive patients, 30 had evidence of M-BCR rearrangement, two cases were difficult to interpret, and one clearly lacked evidence of M-BCR rearrangement. Of 19 Ph-negative patients, nine showed M-BCR rearrangement, nine showed no rearrangement, and one result was uncertain. We selected for more detailed study eight patients (three Ph-positive and five Ph-negative). Two of the Ph-positive patients, whose Southern blots were difficult to interpret, had rearranged bands when the BCR gene was studied by pulsed field gel electrophoresis (PFGE). Results of PFGE studies and in situ hybridization to metaphase chromosomes in the third Ph-positive patient, whose DNA clearly lacked M-BCR rearrangement on Southern analysis, were consistent with a breakpoint on chromosome 22 located 3' of all known exons of the BCR gene. However, mRNA studied with the polymerase chain reaction showed evidence of a classical b2-a2 linkage. The findings in this patient may be explained by an unusual genomic breakpoint downstream of the BCR gene associated with long range splicing that excluded all of the 3' BCR exons. Of the five patients with Ph-negative M-BCR non-rearranged CML studied by PFGE for BCR gene rearrangement, none had evidence of rearranged bands. We conclude that PFGE is a valuable adjunct to standard molecular techniques for the study of atypical cases of CML. Occasional patients with Ph-positive CML have breakpoints outside M-BCR. The BCR gene is probably not involved in patients with Ph-negative, M-BCR non-rearranged CML.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the cells from three selected patients with Ph-chromosome-negative chronic myeloid leukemia (CML) by Southern blotting, polymerase chain reaction, and in situ hybridization of informative probes to metaphase chromosomes. All three patients had rearrangement of M-BCR sequences in the BCR gene and expression of one or other of the mRNA species characteristic of Ph-positive CML. Leukemic metaphases studied after trypsin-Giemsa banding were indistinguishable from normal. The ABL probe localized both to chromosome 9 and 22 in each case. A probe containing 3' M-BCR sequences localized only to chromosome 22, and not to chromosome 9 as would be expected in Ph-positive CML. Two new probes that recognize different polymorphic regions distal to the ABL gene on chromosome 9 in normal subjects localized exclusively to chromosome 9 in two patients and to both chromosomes 9 and 22 in one patient. These results show that Ph-negative CML with BCR rearrangement is associated with insertion of a variable quantity of chromosome 9 derived material into chromosome 22q11; there is no evidence for reciprocal translocation of material from chromosome 22 to chromosome 9.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interleukin-12 receptor β1 (IL-12Rβ1) deficiency is the most common form of Mendelian susceptibility to mycobacterial disease (MSMD). We undertook an international survey of 141 patients from 102 kindreds in 30 countries. Among 102 probands, the first infection occurred at a mean age of 2.4 years. In 78 patients, this infection was caused by Bacille Calmette-Guérin (BCG; n = 65), environmental mycobacteria (EM; also known as atypical or nontuberculous mycobacteria) (n = 9) or Mycobacterium tuberculosis (n = 4). Twenty-two of the remaining 24 probands initially presented with nontyphoidal, extraintestinal salmonellosis. Twenty of the 29 genetically affected sibs displayed clinical signs (69%); however 8 remained asymptomatic (27%). Nine nongenotyped sibs with symptoms died. Recurrent BCG infection was diagnosed in 15 cases, recurrent EM in 3 cases, recurrent salmonellosis in 22 patients. Ninety of the 132 symptomatic patients had infections with a single microorganism. Multiple infections were diagnosed in 40 cases, with combined mycobacteriosis and salmonellosis in 36 individuals. BCG disease strongly protected against subsequent EM disease (p = 0.00008). Various other infectious diseases occurred, albeit each rarely, yet candidiasis was reported in 33 of the patients (23%). Ninety-nine patients (70%) survived, with a mean age at last follow-up visit of 12.7 years ± 9.8 years (range, 0.5-46.4 yr). IL-12Rβ1 deficiency is characterized by childhood-onset mycobacteriosis and salmonellosis, rare recurrences of mycobacterial disease, and more frequent recurrence of salmonellosis. The condition has higher clinical penetrance, broader susceptibility to infections, and less favorable outcome than previously thought. © 2010 Lippincott Williams & Wilkins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase (3β-HSD) catalyze the oxidative conversion of Δ5-3β-hydroxysteroids to the Δ4-3-keto configuration and is therefore essential for the biosynthesis of all classes of hormonal steroids, namely progesterone, glucocorticoids, mineralocorticoids, androgens, and estrogens. Using human 3β-HSD cDNA as probe, a human 3β-HSD gene was isolated from a λ-EMBL3 library of leucocyte genomic DNA. A fragment of 3β-HSD genomic DNA was also obtained by amplification of genomic DNA using the polymerase chain reaction. The 3β-HSD gene contains a 5′-untranslated exon of 53 base pairs (bp) and three successive translated exons of 232, 165, and 1218 bp, respectively, separated by introns of 129, 3883, and 2162 bp. The transcription start site is situated 267 nucleotides upstream from the ATG initiating codon. DNA sequence analysis of the 5′-flanking region reveals the existence of a putative TATA box (ATAAA) situated 28 nucleotides upstream from the transcription start site while a putative CAAT binding sequence is located 57 nucleotides upstream from the TATA box. Expression of a cDNA insert containing the coding region of 3β-HSD in nonsteroidogenic cells shows that the gene encodes a single 42-kDa protein containing both 3β-hydroxysteroid dehydrogenase and Δ5-Δ4-isomerase activities. Moreover, all natural steroid substrates tested are transformed with comparable efficiency by the enzyme. In addition to its importance for studies of the regulation of expression of 3β-HSD in gonadal as well as peripheral tissues, knowledge of the structure of the human 3β-HSD gene should permit investigation of the molecular defects responsible for 3β-HSD deficiency, the second most common cause of adrenal hyperplasia in children.