3 resultados para Array
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
Induction of cell proliferation by mitogen or growth factor stimulation leads to the specific induction or repression of a large number of genes. To identify genes differentially regulated by the cAMP-dependent transduction pathway, which is poorly characterized so far, we used the cDNA expression array technology. Hybridizations of Atlas human cDNA expression arrays with (32)P-labeled cDNA probes derived from control or thyrotropin (TSH)-stimulated dog thyrocytes in primary culture generated expression profiles of hundreds of genes simultaneously. Among the genes that displayed modified expression, we selected the transcription factor ID3, whose expression was increased by a cAMP-dependent stimulus. ID3 overexpression after TSH stimulation was first verified by Northern blotting analysis, and its mRNA regulation was then investigated in response to a variety of agents acting on thyrocyte proliferation and/or differentiation. We show that: (1) ID3 mRNA induction was stronger after stimulation of the cAMP cascade, but was not restricted to this signaling pathway, as phorbol myristate ester (TPA) and insulin also stimulated mRNA accumulation; (2) in contrast, powerful mitogens for thyroid cells, epidermal growth factor and hepatocyte growth factor, did not significantly modify ID3 mRNA levels; (3) ID3 protein levels closely parallelled mRNA levels, as revealed by immunofluorescence experiments showing a nuclear signal regulated by TSH; (4) in papillary thyroid carcinomas, ID3 mRNA was downregulated. Our results suggest that ID3 expression might be more related to the differentiating process induced by TSH than to the proliferative action of this hormone.
Resumo:
The Telescope Array is a detector of extensive air shower produced by ultra High energy cosmic ray. This detector is located on Utah, USA. The construction have been completed and the full operation has been running from March 2008. In this talk, the status of observation and our prospects are described. © 2010 American Institute of Physics.
Resumo:
The Askar'yan Radio Array (ARA), a neutrino detector to be situated at the South Pole next to the IceCube detector, will be sensitive to ultrahigh-energy cosmic neutrinos above 0.1 EeV and will have the greatest sensitivity within the favored energy range from 0.1 EeV up to 10 EeV. Neutrinos of this energy are guaranteed by current observations of the GZK-cutoff by the HiRes and Pierre Auger Observatories. The detection method is based on Cherenkov emission by a neutrino induced cascade in the ice, coherent at radio wavelengths, which was predicted by Askar'yan in 1962 and verified in beam tests at SLAC in 2006. The detector is planned to consist of 37 stations with 16 antennas each, deployed at depths of up to 200 m under the ice surface. During the last two polar seasons (2010-2011, 2011-2012), a prototype station and a first detector station were successfully deployed and are taking data. These data have been and are currently being analyzed to study the ambient noise background and the radio frequency properties of the South Pole ice sheet. A worldwide collaboration is working on the planning, construction and data analysis of the detector array. This article will give a short report on the status of the ARA detector and show recent results from the recorded data. © 2013 AIP Publishing LLC.