The Askaryan radio array


Autoria(s): Meures, Thomas
Data(s)

2013

Resumo

The Askar'yan Radio Array (ARA), a neutrino detector to be situated at the South Pole next to the IceCube detector, will be sensitive to ultrahigh-energy cosmic neutrinos above 0.1 EeV and will have the greatest sensitivity within the favored energy range from 0.1 EeV up to 10 EeV. Neutrinos of this energy are guaranteed by current observations of the GZK-cutoff by the HiRes and Pierre Auger Observatories. The detection method is based on Cherenkov emission by a neutrino induced cascade in the ice, coherent at radio wavelengths, which was predicted by Askar'yan in 1962 and verified in beam tests at SLAC in 2006. The detector is planned to consist of 37 stations with 16 antennas each, deployed at depths of up to 200 m under the ice surface. During the last two polar seasons (2010-2011, 2011-2012), a prototype station and a first detector station were successfully deployed and are taking data. These data have been and are currently being analyzed to study the ambient noise background and the radio frequency properties of the South Pole ice sheet. A worldwide collaboration is working on the planning, construction and data analysis of the detector array. This article will give a short report on the status of the ARA detector and show recent results from the recorded data. © 2013 AIP Publishing LLC.

SCOPUS: cp.p

info:eu-repo/semantics/published

Formato

No full-text files

Identificador

uri/info:doi/10.1063/1.4807513

http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/230511

Idioma(s)

en

Fonte

AIP Conference Proceedings, 1535

Palavras-Chave #Astronomie #Physique #Askaryan effect #Astroparticle Physics #GZK neutrinos #Radio-Cerenkov emission
Tipo

info:eu-repo/semantics/article

info:ulb-repo/semantics/articlePeerReview

info:ulb-repo/semantics/openurl/article