48 resultados para lymphocytes T
Resumo:
Previously, we and others have shown that MHC class-II deficient humans have greatly reduced numbers of CD4+CD8- peripheral T cells. These type-III Bare Lymphocyte Syndrome patients lack MHC class-II and have an impaired MHC class-I antigen expression. In this study, we analyzed the impact of the MHC class-II deficient environment on the TCR V-gene segment usage in this reduced CD4+CD8- T-cell subset. For these studies, we employed TcR V-region-specific monoclonal antibodies (mAbs) and a semiquantitative PCR technique with V alpha and V beta amplimers, specific for each of the most known V alpha- and V beta-gene region families. The results of our studies demonstrate that some of the V alpha-gene segments are used less frequent in the CD4+CD8- T-cell subset of the patient, whereas the majority of the TCR V alpha- and V beta-gene segments investigated were used with similar frequencies in both subsets in the type-III Bare Lymphocyte Syndrome patient compared to healthy control family members. Interestingly, the frequency of TcR V alpha 12 transcripts was greatly diminished in the patient, both in the CD4+CD8- as well as in the CD4-CD8+ compartment, whereas this gene segment could easily be detected in the healthy family controls. On the basis of the results obtained in this study, it is concluded that within the reduced CD4+CD8- T-cell subset of this patient, most of the TCR V-gene segments tested for are employed. However, a skewing in the usage frequency of some of the V alpha-gene segments toward the CD4-CD8+ T-cell subset was noticeable in the MHC class-II deficient patient that differed from those observed in the healthy family controls.
Resumo:
To evaluate the immunogenicity and safety of a 23-valent pneumococcal vaccine in human immunodeficiency virus (HIV)-seropositive patients, 80 men and 18 women received 1 dose of the vaccine (Pneumo 23; Pasteur Mérieux MSD, Brussels). The total IgG antibody response against all 23 Streptococcus pneumoniae capsular antigens was measured. Antibody levels were expressed in arbitrary units per microliter, referring to a standard curve. Geometric mean titers of the total IgG capsular antibodies on the day of vaccination and 30-45 days later were compared. The ratios of titers after and before vaccination in patients with > 500, 200-500, and < 200 CD4 lymphocytes/microL were 10, 10, and 12.6, respectively. Nonresponse (ratio < 4) occurred in 17% of patients and was unrelated to CD4 cell count. The vaccine was well tolerated; no serious side effects occurred. In 83% of the patients with HIV infection, the total antipneumococcal IgG level was higher after vaccination.
Resumo:
Measurement of antigen-specific T cell responses is an adjunctive parameter to evaluate protection induced by a previous Bordetella pertussis infection or vaccination. The assessment of T cell responses is technically complex and usually performed on fresh peripheral blood mononuclear cells (PBMC). The objective of this study was to identify simplified methods to assess pertussis specific T cell responses and verify if these assays could be performed using frozen/thawed (frozen) PBMC. Three read-outs to measure proliferation were compared: the fluorescent dye 5,6-carboxylfluorescein diacetate succinimidyl ester (CFSE) dilution test, the number of blast cells defined by physical parameters, and the incorporation of (3)H-thymidine. The results of pertussis-specific assays performed on fresh PBMC were compared to the results on frozen PBMC from the same donor. High concordance was obtained when the results of CFSE and blast read-outs were compared, an encouraging result since blast analysis allows the identification of proliferating cells and does not require any use of radioactive tracer as well as any staining. The results obtained using fresh and frozen PBMC from the same donor in the different T cell assays, including IFNγ and TNFα cytokine production, did not show significant differences, suggesting that a careful cryopreservation process of PBMC would not significantly influence T cell response evaluation. Adopting blast analysis and frozen PBMC, the possibility to test T cell responses is simplified and might be applied in population studies, providing for new instruments to better define correlates of protection still elusive in pertussis.
Resumo:
The novel immune-type receptors (NITRs), which have been described in numerous bony fish species, are encoded by multigene families of inhibitory and activating receptors and are predicted to be functional orthologs to the mammalian natural killer cell receptors (NKRs). Within the zebrafish NITR family, nitr9 is the only gene predicted to encode an activating receptor. However, alternative RNA splicing generates three distinct nitr9 transcripts, each of which encodes a different isoform. Although nitr9 transcripts have been detected in zebrafish lymphocytes, the specific hematopoietic lineage(s) that expresses Nitr9 remains to be determined. In an effort to better understand the role of NITRs in zebrafish immunity, anti-Nitr9 monoclonal antibodies were generated and evaluated for the ability to recognize the three Nitr9 isoforms. The application of these antibodies to flow cytometry should prove to be useful for identifying the specific lymphocyte lineages that express Nitr9 and may permit the isolation of Nitr9-expressing cells that can be directly assessed for cytotoxic (e.g. NK) function.
Resumo:
Erm, a member of the PEA3 group within the Ets family of transcription factors, is expressed in murine and human lymphocytes. Here, we show that in the human Molt4 lymphoblastic cell line, the erm gene expression is regulated by the conventional PKC (cPKC) pathway. To better characterize the molecular mechanism by which cPKC regulates Erm transcription in Molt4 cells, we tested proximal promoter deletions of the human gene, and identified a specific cPKC-regulated region between positions -420 and -115 upstream of the first exon.
Resumo:
Because only 10% of individuals infected with Mycobacterium tuberculosis will eventually develop disease, antigens that are recognized differently by the immune systems of infected healthy and diseased subjects may constitute potential vaccine candidates. Here, the heparin-binding hemagglutinin adhesin (HBHA) is identified as such an antigen. Lymphocytes from 60% of healthy infected individuals (n=25) produced interferon (IFN)-gamma after stimulation with HBHA, compared with only 4% of patients with active tuberculosis (n=24). In the responders, both CD4(+) and CD8(+) cells secreted HBHA-specific IFN-gamma, and the antigen was presented by both major histocompatibility complex class I and II molecules. In contrast to the reduced ability of patients with tuberculosis to produce HBHA-specific IFN-gamma, most of them (82%) produced anti-HBHA antibodies, compared with 36% of the infected healthy subjects. These observations indicate that HBHA is recognized differently by the immune systems of patients with tuberculosis and infected healthy individuals and might provide a marker for protection against tuberculosis.
Resumo:
Neonatal immaturity of the immune system is currently believed to generally limit the induction of immune responses to vaccine Ags and to skew them toward type 2 responses. We demonstrated here that Bordetella pertussis infection in very young infants (median, 2 mo old) as well as the first administration of whole-cell pertussis vaccine induces B. pertussis Ag-specific IFN-gamma secretion by the PBMC of these infants. IFN-gamma was secreted by both CD4(+) and CD8(+) T lymphocytes, and the levels of Ag-induced IFN-gamma secretion did not correlate with the age of the infants. Appearance of the specific Th-1 cell-mediated immunity was accompanied by a general shift of the cytokine secretion profile of these infants toward a stronger Th1 profile, as evidenced by the response to a polyclonal stimulation. We conclude that the immune system of 2-mo-old infants is developmentally mature enough to develop Th1 responses in vivo upon infection by B. pertussis or vaccination with whole-cell pertussis vaccines.
Resumo:
BACKGROUND: The detection of latent tuberculosis infection (LTBI) is a major component of tuberculosis (TB) control strategies. In addition to the tuberculosis skin test (TST), novel blood tests, based on in vitro release of IFN-gamma in response to Mycobacterium tuberculosis-specific antigens ESAT-6 and CFP-10 (IGRAs), are used for TB diagnosis. However, neither IGRAs nor the TST can separate acute TB from LTBI, and there is concern that responses in IGRAs may decline with time after infection. We have therefore evaluated the potential of the novel antigen heparin-binding hemagglutinin (HBHA) for in vitro detection of LTBI. METHODOLOGY AND PRINCIPAL FINDINGS: HBHA was compared to purified protein derivative (PPD) and ESAT-6 in IGRAs on lymphocytes drawn from 205 individuals living in Belgium, a country with low TB prevalence, where BCG vaccination is not routinely used. Among these subjects, 89 had active TB, 65 had LTBI, based on well-standardized TST reactions and 51 were negative controls. HBHA was significantly more sensitive than ESAT-6 and more specific than PPD for the detection of LTBI. PPD-based tests yielded 90.00% sensitivity and 70.00% specificity for the detection of LTBI, whereas the sensitivity and specificity for the ESAT-6-based tests were 40.74% and 90.91%, and those for the HBHA-based tests were 92.06% and 93.88%, respectively. The QuantiFERON-TB Gold In-Tube (QFT-IT) test applied on 20 LTBI subjects yielded 50% sensitivity. The HBHA IGRA was not influenced by prior BCG vaccination, and, in contrast to the QFT-IT test, remote (>2 years) infections were detected as well as recent (<2 years) infections by the HBHA-specific test. CONCLUSIONS: The use of ESAT-6- and CFP-10-based IGRAs may underestimate the incidence of LTBI, whereas the use of HBHA may combine the operational advantages of IGRAs with high sensitivity and specificity for latent infection.
Resumo:
RATIONALE: Tuberculosis (TB) remains a leading cause of death, and the role of T-cell responses to control Mycobacterium tuberculosis infections is well recognized. Patients with latent TB infection develop strong IFN-gamma responses to the protective antigen heparin-binding hemagglutinin (HBHA), whereas patients with active TB do not. OBJECTIVES: We investigated the mechanism of this difference and evaluated the possible involvement of regulatory T (Treg) cells and/or cytokines in the low HBHA T-cell responses of patients with active TB. METHODS: The impact of anti-transforming growth factor (TGF)-beta and anti-IL-10 antibodies and of Treg cell depletion on the HBHA-induced IFN-gamma secretion was analyzed, and the Treg cell phenotype was characterized by flow cytometry. MEASUREMENTS AND MAIN RESULTS: Although the addition of anti-TGF-beta or anti-IL-10 antibodies had no effect on the HBHA-induced IFN-gamma secretion in patients with active TB, depletion of CD4(+)CD25(high)FOXP3(+) T lymphocytes resulted in the induction by HBHA of IFN-gamma concentrations that reached levels similar to those obtained for latent TB infection. No effect was noted on the early-secreted antigen target-6 or candidin T-cell responses. CONCLUSIONS: Specific CD4(+)CD25(high)FOXP3(+) T cells depress the T-cell-mediated immune responses to the protective mycobacterial antigen HBHA during active TB in humans.
Resumo:
Although post-translational modifications of protein antigens may be important componenets of some B cell epitopes, the determinants of T cell immunity are generally nonmodified peptides. Here we show that methylation of the Mycobacterium tuberculosis heparin-binding hemagglutinin (HBHA) by the bacterium is essential for effective T cell immunity to this antigen in infected healthy humans and in mice. Methylated HBHA provides high levels of protection against M. tuberculosis challenge in mice, whereas nonmethylated HBHA does not. Protective immunity induced by methylated HBHA is comparable to that afforded by vaccination with bacille Calmette et Guérin, the only available anti-tuberculosis vaccine. Thus, post-translational modifications of proteins may be crucial for their ability to induce protective T cell-mediated immunity against infectious diseases such as tuberculosis.
Resumo:
RATIONALE: Tuberculosis (TB) remains a major cause of mortality. A better understanding of the immune responses to mycobacterial antigens may be helpful to develop improved vaccines and diagnostics. OBJECTIVE: The mycobacterial antigen heparin-binding-hemagglutinin (HBHA) induces strong interferon-gamma (IFN-gamma) responses by circulating lymphocytes from Mycobacterium tuberculosis latently infected subjects, and low responses associated with CD4(+) regulatory T (Treg) cells in TB patients. Here, we investigated HBHA-specific IFN-gamma responses at the site of the TB disease. METHODS: Bronchoalveolar lavages, pleural fluids and blood were prospectively collected from 61 patients with a possible diagnosis of pulmonary and/or pleural TB. HBHA-specific IFN-gamma production was analyzed by flow cytometry and ELISA. The suppressive effect of pleural Treg cells was investigated by depletion experiments. MEASUREMENTS AND MAIN RESULTS: The percentages of HBHA-induced IFN-gamma(+) alveolar and pleural lymphocytes were higher for pulmonary (P<0.0001) and for pleural (P<0.01) TB than for non-TB controls. Local CD4(+) and CD8(+) T cells produced the HBHA-specific IFN-gamma. This local secretion was not suppressed by Treg lymphocytes, contrasting with previously reported data on circulating lymphocytes. CONCLUSION: TB patients display differential effector and regulatory T cell responses to HBHA in local and circulating lymphocytes with a predominant effector CD4(+) and CD8(+) response locally, compared to a predominant Treg response among circulating lymphocytes. These findings may be helpful for the design of new vaccines against TB, and the detection of HBHA-specific T cells at the site of the infection may be a promising tool for the rapid diagnosis of active TB.
Resumo:
Objectives: One third of the world population is considered latently infected with Mycobacterium tuberculosis(LTBI) and sterilizing this reservoir of bacteria that may reactivate is required for tuberculosis (TB) elimination. Thegroup of individuals with LTBI is heterogeneous with some of them being more at risk to develop TB disease thanothers. Improved diagnosis of subjects with LTBI is needed, allowing to differentiate subjects with LTBI from thosewith active TB, and to select among LTBI subjects those who are more at risk to develop active TB. We havecharacterized at the cellular level both the quantitative and qualitative T cell responses to different mycobacterialantigens in selected populations of infected subjects in order to identify new biomarkers that could help to identify M.tuberculosis-infected subjects and to stratify them in risk groups for reactivation of the infection.Methods: Lymphoblast frequencies and cytokine production (IFN-γ, TNF-α, IL-2) among CD4+ and CD8+ T cellswere analyzed by flow cytometry after in vitro stimulation with the latency antigen heparin-binding haemagglutinin(HBHA) or early-secreted antigen Target-6 (ESAT-6) of peripheral blood mononuclear cells from clinically wellcharacterized M. tuberculosis-infected humans (28 LTBI, 22 TB disease,12 controls). The LTBI group definedaccording to the Center for Disease Control guidelines was subdivided into QuantiFERON-TB Gold in-Tube (QFT)positive and negative subgroups.Results: Similar to TB patients, QFT+ LTBI subjects had higher proportions of HBHA-induced TNF-αsingle+ CD4+lymphocytes than QFT- LTBI subjects (p<0.05). Compared to LTBI subjects, TB patients had higher frequencies ofESAT-6-induced CD8+ lymphoblasts (p<0.001), higher proportions of ESAT-6-induced IFN-γ+TNF-α+ CD4+ Tlymphocytes (p<0.05), and lower proportions of HBHA-induced IFN-γ+TNF-α+IL-2+ (p<0.05) CD4+ T lymphocytes.Conclusions: These data provide new biomarkers to discriminate active TB from LTBI, and more interestingly,help to identify LTBI subjects with increased likelihood to develop TB disease.
Resumo:
OBJECTIVES: To evaluate the immune reconstitution in HIV-1-infected children in whom highly active antiretroviral therapy (HAART) controlled viral replication and to assess the existence of a relation between the magnitude of this restoration and age. METHODS: All HIV-1-infected children in whom a new HAART decreased plasma viral load below 400 copies/ml after 3 months of therapy were prospectively enrolled in a study of their immune reconstitution. Viral load, lymphocyte phenotyping, determination of CD4+ and CD8+ T cell receptor repertoires and proliferative responses to mitogens and recall antigens were assessed every 3 months during 1 year. RESULTS: Nineteen children were evaluated. Naive and memory CD4+ percentages were already significantly increased after 3 months of HAART. In contrast to memory CD4+ percentages, naive CD4+ percentages continued to rise until 12 months. Age at baseline was inversely correlated with the magnitude of the rise in naive CD4+ cells after 3, 6 and 9 months of therapy but not after 12 months. Although memory and activated CD8+ cells were already decreasing after 3 months, abnormalities of the CD8 T cell receptor repertoire and activation of CD8+ cells persisted at 1 year. HAART increased the response to mitogens as early as 3 months after starting therapy. CONCLUSIONS: In children the recovery of naive CD4+ cells occurs more rapidly if treatment is started at a younger age, but after 1 year of viral replication control, patients of all ages have achieved the same level of restoration. Markers of chronic activation in CD8+ cells persist after 1 year of HAART.
Resumo:
Case Reports
Resumo:
BACKGROUND & AIMS: Few data are available on the potential role of T lymphocytes in experimental acute pancreatitis. The aim of this study was to characterize their role in the inflammatory cascade of acute pancreatitis. METHODS: To type this issue, acute pancreatitis was induced by repeated injections of cerulein in nude mice and in vivo CD4(+) or CD8(+) T cell-depleted mice. The role of T lymphocyte-costimulatory pathways was evaluated using anti-CD40 ligand or anti-B7-1 and -B7-2 monoclonal blocking antibodies. The role of Fas-Fas ligand was explored using Fas ligand-targeted mutant (generalized lymphoproliferative disease) mice. Severity of acute pancreatitis was assessed by serum hydrolase levels and histology. Intrapancreatic interleukin 12, interferon gamma, Fas ligand, and CD40 ligand messenger RNA were detected by reverse-transcription polymerase chain reaction. Intrapancreatic T lymphocytes were identified by immunohistochemistry. RESULTS: In control mice, T cells, most of them CD4(+) T cells, are present in the pancreas and are recruited during acute pancreatitis. In nude mice, histological lesions and serum hydrolase levels are significantly decreased. T-lymphocyte transfer into nude mice partially restores the severity of acute pancreatitis and intrapancreatic interferon gamma, interleukin 12, and Fas ligand gene transcription. The severity of pancreatitis is also reduced by in vivo CD4(+) (but not CD8(+)) T-cell depletion and in Fas ligand-targeted mutant mice. Blocking CD40-CD40 ligand or B7-CD28 costimulatory pathways has no effect on the severity of pancreatitis. CONCLUSIONS: T lymphocytes, particularly CD4(+) T cells, play a pivotal role in the development of tissue injury during acute experimental pancreatitis in mice.