18 resultados para Informatique quantique
Resumo:
We develop a framework for proving approximation limits of polynomial size linear programs (LPs) from lower bounds on the nonnegative ranks of suitably defined matrices. This framework yields unconditional impossibility results that are applicable to any LP as opposed to only programs generated by hierarchies. Using our framework, we prove that O(n1/2-ε)-approximations for CLIQUE require LPs of size 2nΩ(ε). This lower bound applies to LPs using a certain encoding of CLIQUE as a linear optimization problem. Moreover, we establish a similar result for approximations of semidefinite programs by LPs. Our main technical ingredient is a quantitative improvement of Razborov's [38] rectangle corruption lemma for the high error regime, which gives strong lower bounds on the nonnegative rank of shifts of the unique disjointness matrix.
Resumo:
In this paper we extend recent results of Fiorini et al. on the extension complexity of the cut polytope and related polyhedra. We first describe a lifting argument to show exponential extension complexity for a number of NP-complete problems including subset-sum and three dimensional matching. We then obtain a relationship between the extension complexity of the cut polytope of a graph and that of its graph minors. Using this we are able to show exponential extension complexity for the cut polytope of a large number of graphs, including those used in quantum information and suspensions of cubic planar graphs.
Resumo:
We prove NP-hardness results for five of Nintendo's largest video game franchises: Mario, Donkey Kong, Legend of Zelda, Metroid, and Pokémon. Our results apply to generalized versions of Super Mario Bros.1-3, The Lost Levels, and Super Mario World; Donkey Kong Country 1-3; all Legend of Zelda games; all Metroid games; and all Pokémon role-playing games. In addition, we prove PSPACE-completeness of the Donkey Kong Country games and several Legend of Zelda games.