3 resultados para zinc sulfate

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To investigate (a) variability in powder/liquid proportioning (b) effect of the extremes of any such variability on diametral tensile strength (DTS), in a commercial zinc phosphate cement. Statistical analyses (a = 0.05) were by Student's t-test in the case of powder/liquid ratio and one-way ANOVA and Tukey HSD for for pair-wise comparisons of mean DTS. The Null hypotheses were that (a) the powder-liquid mixing ratios observed would not differ from the manufacturer's recommended ratio (b) DTS of the set cement samples using the extreme powder/liquid ratios observed would not differ from those made using the manufacturer's recommended ratio. Methodology: Thirty-four undergraduate dental students dispensed the components according to the manufacturer's instructions. The maximum and minimum powder/liquid ratios (m/m), together with the manufacturer's recommended ratio (m/m), were used to prepare cylindrical samples (n = 3 x 34) for DTS testing. Results: Powder/liquid ratios ranged from 2.386 to 1.018.The mean ratio (1.644 (341) m/m) was not significantly different from the manufacturer's recommended value of 1.718 (p=0.189). DTS values for the maximum and minimum ratios (m/m), respectively, were both significantly different from each other (p<0.001) and from the mean value obtained from the manufacturer's recommended ratio (m/m) (p<0.001). Conclusions: Variability exists in powder/liquid ratio (m/m) for hand dispensed zinc phosphate cement. This variability can affect the DTS of the set material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cystinosis is a multi-system autosomal recessive disorder caused by mutations and/or deletions in both alleles of CTNS, a gene encoding for the low pH dependent lysosomal cystine exporter cystinosin. Cystinosis occurs in approximately 1:200,000 newborns worldwide and is characterised by an accumulation of cystine in the lysosomes. The most severe form of the disorder is nephropathic cystinosis presenting Fanconi syndrome and leads without treatment to an end-stage renal failure before the age of ten. The only treatment available so far is cysteamine therapy, which delays disease progression by five years, but does not provide a cure for cystinosis patients. Current gene and cell based therapeutic approaches have not yet provided a suitable alternative. A potentially approach for a long-term treatment could be to generate autologous gene–modified stem cells by repairing the gene. Zinc Finger Nucleases (ZFNs) serve as a tool to increase HDR up to a 200,000-fold by introducing a double-stranded break (DSB). Thus, simple mutations in the CTNS gene could be corrected by introduction of a double-stranded break using ZFNs to boost the process of HDR with a suitable donor DNA sequence. A permanent repair of the most common lesion CTNS, a 57 kb deletion, could be achieved by ZFN-mediated HDR using a minigene CTNS promoter/cDNA construct. The thesis describes the design and testing of seven zinc finger nuclease pairs for their cleavage activity in vitro and in cellulo.. A highly sensitive assay to detect even low levels of ZFN-mediated HDR was also developed. Finally, to further investigate the role of autophagy in tissue injury in cystinotic cells an assay to monitor autophagy levels in the cells was successfully developed. This assay provides the opportunity to demonstrate functional restoration of CTNS after successful ZFN-HDR in cystinotic cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of Zn(Si(SiMe3)3)2 with ZnX2 (X = Cl, Br, I) in tetrahydrofuran (THF) at 23 °C afforded [Zn(Si(SiMe3)3)X(THF)]2 in 83–99% yield. X-ray crystal structures revealed dimeric structures with Zn2X2 cores. Thermogravimetric analyses of [Zn(Si(SiMe3)3)X(THF)]2 demonstrated a loss of coordinated THF between 50 and 155 °C and then single-step weight losses between 200 and 275 °C. The nonvolatile residue was zinc metal in all cases. Bulk thermolyses of [Zn(Si(SiMe3)3)X(THF)]2 between 210 and 250 °C afforded zinc metal in 97–99% yield, Si(SiMe3)3X in 91–94% yield, and THF in 81–98% yield. Density functional theory calculations confirmed that zinc formation becomes energetically favorable upon THF loss. Similar reactions are likely to be general for M(SiR3)n/MXn pairs and may lead to new metal-film-growth processes for chemical vapor deposition and atomic layer deposition.