4 resultados para least-cost diet

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the European Union under the Common Agricultural Policy (CAP) milk production was restricted by milk quotas since 1984. However, due to recent changes in the Common Agricultural Policy (CAP), milk quotas will be abolished by 2015. Therefore, the European dairy sector will soon face an opportunity, for the first time in a generation, to expand. Numerous studies have shown that milk production in Ireland will increase significantly post quotas (Laepple and Hennessy (2010), Donnellan and Hennessy (2007) and Lips and Reider (2005)). The research in this thesis explored milk transport and dairy product processing in the Irish dairy processing sector in the context of milk quota removal and expansion by 2020. In this study a national milk transport model was developed for the Irish dairy industry, the model was used to examine different efficiency factors in milk transport and to estimate milk transport costs post milk quota abolition. Secondly, the impact of different milk supply profiles on milk transport costs was investigated using the milk transport model. Current processing capacity in Ireland was compared against future supply, it was concluded that additional milk processing capacity would not be sufficient to process the additional milk. Thirdly, the milk transport model was used to identify the least cost locations (based on transport costs) to process the additional milk supply in 2020. Finally, an optimisation model was developed to identify the optimum configuration for the Irish dairy processing sector in 2020 taking cognisance of increasing transport costs and decreasing processing costs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to growing concerns regarding the anthropogenic interference with the climate system, countries across the world are being challenged to develop effective strategies to mitigate climate change by reducing or preventing greenhouse gas (GHG) emissions. The European Union (EU) is committed to contribute to this challenge by setting a number of climate and energy targets for the years 2020, 2030 and 2050 and then agreeing effort sharing amongst Member States. This thesis focus on one Member State, Ireland, which faces specific challenges and is not on track to meet the targets agreed to date. Before this work commenced, there were no projections of energy demand or supply for Ireland beyond 2020. This thesis uses techno-economic energy modelling instruments to address this knowledge gap. It builds and compares robust, comprehensive policy scenarios, providing a means of assessing the implications of different future energy and emissions pathways for the Irish economy, Ireland’s energy mix and the environment. A central focus of this thesis is to explore the dynamics of the energy system moving towards a low carbon economy. This thesis develops an energy systems model (the Irish TIMES model) to assess the implications of a range of energy and climate policy targets and target years. The thesis also compares the results generated from the least cost scenarios with official projections and target pathways and provides useful metrics and indications to identify key drivers and to support both policy makers and stakeholder in identifying cost optimal strategies. The thesis also extends the functionality of energy system modelling by developing and applying new methodologies to provide additional insights with a focus on particular issues that emerge from the scenario analysis carried out. Firstly, the thesis develops a methodology for soft-linking an energy systems model (Irish TIMES) with a power systems model (PLEXOS) to improve the interpretation of the electricity sector results in the energy system model. The soft-linking enables higher temporal resolution and improved characterisation of power plants and power system operation Secondly, the thesis develops a methodology for the integration of agriculture and energy systems modelling to enable coherent economy wide climate mitigation scenario analysis. This provides a very useful starting point for considering the trade-offs between the energy system and agriculture in the context of a low carbon economy and for enabling analysis of land-use competition. Three specific time scale perspectives are examined in this thesis (2020, 2030, 2050), aligning with key policy target time horizons. The results indicate that Ireland’s short term mandatory emissions reduction target will not be achieved without a significant reassessment of renewable energy policy and that the current dominant policy focus on wind-generated electricity is misplaced. In the medium to long term, the results suggest that energy efficiency is the first cost effective measure to deliver emissions reduction; biomass and biofuels are likely to be the most significant fuel source for Ireland in the context of a low carbon future prompting the need for a detailed assessment of possible implications for sustainability and competition with the agri-food sectors; significant changes are required in infrastructure to deliver deep emissions reductions (to enable the electrification of heat and transport, to accommodate carbon capture and storage facilities (CCS) and for biofuels); competition between energy and agriculture for land-use will become a key issue. The purpose of this thesis is to increase the evidence-based underpinning energy and climate policy decisions in Ireland. The methodology is replicable in other Member States.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Dietary behaviour interventions have the potential to reduce diet-related disease. Ample opportunity exists to implement these interventions in the workplace. The overall aim is to assess the effectiveness and cost-effectiveness of complex dietary interventions focused on environmental dietary modification alone or in combination with nutrition education in large manufacturing workplace settings. Methods/design: A clustered controlled trial involving four large multinational manufacturing workplaces in Cork will be conducted. The complex intervention design has been developed using the Medical Research Council's framework and the National Institute for Health and Clinical Excellence (NICE) guidelines and will be reported using the TREND statement for the transparent reporting of evaluations with non-randomized designs. It will draw on a soft paternalistic 'nudge' theoretical perspective. It will draw on a soft paternalistic "nudge" theoretical perspective. Nutrition education will include three elements: group presentations, individual nutrition consultations and detailed nutrition information. Environmental dietary modification will consist of five elements: (a) restriction of fat, saturated fat, sugar and salt, (b) increase in fibre, fruit and vegetables, (c) price discounts for whole fresh fruit, (d) strategic positioning of healthier alternatives and (e) portion size control. No intervention will be offered in workplace A (control). Workplace B will receive nutrition education. Workplace C will receive nutrition education and environmental dietary modification. Workplace D will receive environmental dietary modification alone. A total of 448 participants aged 18 to 64 years will be selected randomly. All permanent, full-time employees, purchasing at least one main meal in the workplace daily, will be eligible. Changes in dietary behaviours, nutrition knowledge, health status with measurements obtained at baseline and at intervals of 3 to 4 months, 7 to 9 months and 13 to 16 months will be recorded. A process evaluation and cost-effectiveness economic evaluation will be undertaken. Discussion: A 'Food Choice at Work' toolbox (concise teaching kit to replicate the intervention) will be developed to inform and guide future researchers, workplace stakeholders, policy makers and the food industry. Trial registration: Current Controlled Trials, ISRCTN35108237.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wind energy is predominantly a nonsynchronous generation source. Large-scale integration of wind generation with existing electricity systems, therefore, presents challenges in maintaining system frequency stability and local voltage stability. Transmission system operators have implemented system operational constraints (SOCs) in order to maintain stability with high wind generation, but imposition of these constraints results in higher operating costs. A mixed integer programming tool was used to simulate generator dispatch in order to assess the impact of various SOCs on generation costs. Interleaved day-ahead scheduling and real-time dispatch models were developed to allow accurate representation of forced outages and wind forecast errors, and were applied to the proposed Irish power system of 2020 with a wind penetration of 32%. Savings of at least 7.8% in generation costs and reductions in wind curtailment of 50% were identified when the most influential SOCs were relaxed. The results also illustrate the need to relax local SOCs together with the system-wide nonsynchronous penetration limit SOC, as savings from increasing the nonsynchronous limit beyond 70% were restricted without relaxation of local SOCs. The methodology and results allow for quantification of the costs of SOCs, allowing the optimal upgrade path for generation and transmission infrastructure to be determined.