2 resultados para immuno-histochemistry

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis explores methods for fabrication of nanohole arrays, and their integration into a benchtop system for use as sensors or anti-counterfeit labels. Chapter 1 gives an introduction to plasmonics and more specifically nanohole arrays and how they have potential as label free sensors compared to the current biosensors on the market. Various fabrication methods are explored, including Focused Ion Beam, Electron Beam Lithography, Nanoimprint lithography, Template stripping and Phase Shift Lithography. Focused Ion Beam was chosen to fabricate the nanohole arrays due to its suitability for rapid prototyping and it’s relatively low cost. In chapter 2 the fabrication of nanohole arrays using FIB is described, and the samples characterised. The fabricated nanohole arrays are tested as bulk refractive index sensors, before a bioassay using whole molecule human IgG antibodies and antigen is developed and performed on the senor. In chapter 3 the fabricated sensors are integrated into a custom built system, capable of real time, multiplexed detection of biomolecules. Here, scFv antibodies of two biomolecules relevant to the detection of pancreatic cancer (C1q and C3) are attached to the nanohole arrays, and detection of their complementary proteins is demonstrated both in buffer (10 nM detection of C1q Ag) and human serum. Chapter 4 explores arrays of anisotropic (elliptical) nanoholes and shows how the shape anisotropy induces polarisation sensitive transmission spectra, in both simulations and fabricated arrays. The potential use of such samples as visible and NIR tag for anti-counterfeiting applications is demonstrated. Finally, chapter 5 gives a summary of the work completed and discusses potential future work in this area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer is amongst the leading causes of death worldwide and the number one cause in the developed world. Every year there are close to 10 million cancer related deaths and this corresponds to hundreds of millions of euro in health care costs and lost productivity, placing a substantial drain on the economy. The efficacy of traditional treatment modalities for cancer therapy, such as surgery, radiotherapy and chemotherapy has plateaued, and while they are undoubtedly effective at prolonging patient lifespan, there is a high rate of adverse side effects and fatal reoccurrence. Currently, there is a huge amount of interest in the areas of cancer immunosurveillance and cancer immuno-editing, which explain some of the complex interactions between the host immune system and cancer. If left unchecked, cancerous malignancies have the ability to generate an immunosuppressive microenvironment, effectively shielding themselves from elimination and promoting tumour growth and progression. To overcome this, the potential of the immune system must be harnessed and the work undertaken in this thesis sought to contribute to this goal. Focus was placed on using novel therapies, combining tumour ablation with immune-modulating antibodies to maximise tumour elimination in an immune dependent manner, to overcome immunosuppression and promote immune activation. Chapter 2 focuses on the use of ECT as a method of tumour ablation and its effects on the immune system. ECT proved to be effective at inhibiting the tumour growth both in vitro and in vivo, and conferred significant survival advantages in both small and large animal models. More importantly, ECT proved to cause tumour death in an immune dependent manner, displaying the hallmarks of Immunogenic Cell Death, increases in immune cell infiltration and generating tumour-specific immune responses. Chapter 3 focuses on combining ECT with immune checkpoint blockade inhibitors; anti- CTLA-4 and anti-PD-1. Both combinations proved to be effective at inhibiting both primary and distal tumour growth, indicating the generation of tumour specific immune responses and prolonged animal survival. In addition, the treatments caused increases in the levels of certain intra-tumoural immune cell subsets and modulated the cytokine profile of treated animals in a way that was favourable overall. Chapter 4 focuses on the combining ECT with an anti-iCOS agonist antibody, capable of causing immune co-stimulation. This novel combinational therapy proved to be the most effective by far, with a high cure rate achieved across a number of different in vivo tumour models. Total regression was seen in both primary and distal tumours, as well as spontaneous metastases, with the tumour specific immune response generated conferring total protection to animals on tumour rechallenge. Overall the data presented here adds further insight into the area of cancer immunotherapy with some of the novel combinational therapies demonstrating substantial clinic potential.