2 resultados para immuno-histochemistry

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The compound eye of Drosophila melanogaster begins to differentiate during the late third larval instar in the eye-antennal imaginal disc. A wave of morphogenesis crosses the disc from posterior to anterior, leaving behind precisely patterned clusters of photoreceptor cells and accessory cells that will constitute the adult ommatidia of the retina. By the analysis of genetically mosaic eyes, it appears that any cell in the eye disc can adopt the characteristics of any one of the different cell types found in the mature eye, including photoreceptor cells and non-neuronal accessory cells such as cone cells. Therefore, cells within the prospective retinal epithelium assume different fates presumably via information present in the environment. The sevenless^+ (sev^+) gene appears to play a role in the expression of one of the possible fates, since the mutant phenotype is the lack of one of the pattern elements, namely, photoreceptor cell R7. The sev^+ gene product had been shown to be required during development of the eye, and had also been shown in genetic mosaics to be autonomous to presumptive R7. As a means of better understanding the pathway instructing the differentiation R7, the gene and its protein product were characterized.

The sev+ gene was cloned by P-element transposon tagging, and was found to encode an 8.2 kb transcript expressed in developing eye discs and adult heads. By raising monoclonal antibodies (MAbs) against a sev^+- β-galactosidase fusion protein, the expression of the protein in the eye disc was localized by immuno-electronmicroscopy. The protein localizes to the apical cell membranes and microvilli of cells in the eye disc epithelium. It appears during development at a time coincident with the initial formation of clusters, and in all the developing photoreceptors and accessory cone cells at a time prior to the overt differentiation of R7. This result is consistent with the pluripotency of cells in the eye disc. Its localization in the membranes suggests that it may receive information directing the development of R7. Its localization in the apical membranes and microvilli is away from the bulk of the cell contacts, which have been cited as a likely regions for information presentation and processing. Biochemical characterization of the sev^+ protein will be necessary to describe further its role in development.

Other mutations in Drosophila have eye phenotypes. These were analyzed to find which ones affected the initial patterning of cells in the eye disc, in order to identify other genes, like sev, whose gene products may be involved in generating the pattern. The adult eye phenotypes ranged from severe reduction of the eye, to variable numbers of photoreceptor cells per ommatidium, to sub de defects in the organization of the supporting cells. Developing eye discs from the different strains were screened using a panel of MAbs, which highlight various developmental stages. Two identified matrix elements in and anterior to the furrow, while others identified the developing ommatidia themselves, like the anti-sev MAb. Mutation phenotypes were shown to appear at many stages of development. Some mutations seem to affect the precursor cells, others, the setting up of the pattern, and still others, the maintenance of the pattern. Thus, additional genes have now been identified that may function to support the development of a complex pattern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, the amino acid sequences have been reported for several proteins, including the envelope glycoproteins of Sindbis virus, which all probably span the plasma membrane with a common topology: a large N-terminal, extracellular portion, a short region buried in the bilayer, and a short C-terminal intracellular segment. The regions of these proteins buried in the bilayer correspond to portions of the protein sequences which contain a stretch of hydrophobic amino acids and which have other common characteristics, as discussed. Reasons are also described for uncertainty, in some proteins more than others, as to the precise location of some parts of the sequence relative to the membrane.

The signal hypothesis for the transmembrane translocation of proteins is briefly described and its general applicability is reviewed. There are many proteins whose translocation is accurately described by this hypothesis, but some proteins are translocated in a different manner.

The transmembraneous glycoproteins E1 and E2 of Sindbis virus, as well as the only other virion protein, the capsid protein, were purified in amounts sufficient for biochemical analysis using sensitive techniques. The amino acid composition of each protein was determined, and extensive N-terminal sequences were obtained for E1 and E2. By these techniques E1 and E2 are indistinguishable from most water soluble proteins, as they do not contain an obvious excess of hydrophobic amino acids in their N-terminal regions or in the intact molecule.

The capsid protein was found to be blocked, and so its N-terminus could not be sequenced by the usual methods. However, with the use of a special labeling technique, it was possible to incorporate tritiated acetate into the N-terminus of the protein with good specificity, which was useful in the purification of peptides from which the first amino acids in the N-terminal sequence could be identified.

Nanomole amounts of PE2, the intracellular precursor of E2, were purified by an immuno-affinity technique, and its N-terminus was analyzed. Together with other work, these results showed that PE2 is not synthesized with an N-terminal extension, and the signal sequence for translocation is probably the N-terminal amino acid sequence of the protein. This N-terminus was found to be 80-90% blocked, also by Nacetylation, and this acetylation did not affect its function as a signal sequence. The putative signal sequence was also found to contain a glycosylated asparagine residue, but the inhibition of this glycosylation did not lead to the cleavage of the sequence.