39 resultados para gut microbiota
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Schizophrenia represents one of the world’s most devastating illnesses due to its often lifelong course and debilitating nature. The treatment of schizophrenia has vastly improved over recent decades with the discovery of several antipsychotic compounds; however these drugs are not without adverse effects that must be addressed to maximize their therapeutic value. Newer, atypical, antipsychotics are associated with a compilation of serious metabolic side effects including weight gain, insulin resistance, fat deposition, glucose dysregulation and ensuing co-morbidities such as type II diabetes mellitus. The mechanisms underlying these side effects remain to be fully elucidated and adequate interventions are lacking. Further understanding of the factors that contribute these side effects is therefore required in order to develop effective adjunctive therapies and to potentially design antipsychotic drugs in the future with reduced impact on the metabolic health of patients. We investigated if the gut microbiota represented a novel mechanism contributing to the metabolic dysfunction associated with atypical antipsychotics. The gut microbiota comprises the bacteria that exist symbiotically within the gastrointestinal tract, and has been shown in recent years to be involved in several aspects of energy balance and metabolism. We have demonstrated that administration of certain antipsychotics in the rat results in an altered microbiota profile and, moreover, that the microbiota is required for the full scale of metabolic dysfunction to occur. We have further shown that specific antibiotics can attenuate certain aspects of olanzapine and risperidone–induced metabolic dysfunction, in particular fat deposition and adipose tissue inflammation. Mechanisms underlying this novel link appear to involve energy utilization via expression of lipogenic genes as well as reduced inflammatory tone. Taken together, these data indicate that the gut microbiota is an important factor involved in the myriad of metabolic complications associated with antipsychotic therapy. Furthermore, these data support the future investigation of microbial-based therapeutics for not only antipsychotic-induced weight gain but also for tackling the global obesity epidemic.
Resumo:
The global proportion of older persons is increasing rapidly. Diet and the intestinal microbiota independently and jointly contribute to health in the elderly. The habitual dietary patterns and functional microbiota components of elderly subjects were investigated in order to identify specific effector mechanisms. A study of the dietary intake of Irish community-dwelling elderly subjects showed that the consumption of foods high in fat and/or sugar was excessive, while consumption of dairy foods was inadequate. Elderly females typically had a more nutrient- dense diet than males and a considerable proportion of subjects, particularly males, had inadequate intakes of calcium, magnesium, vitamin D, folate, zinc and vitamin C. The association between dietary patterns, glycaemic index and cognitive function was also investigated. Elderly subjects consuming ‘prudent’ dietary patterns had better cognitive function compared to those consuming ‘Western’ dietary patterns. Furthermore, fully-adjusted regression models revealed that a high glycaemic diet was associated with poor cognitive function, demonstrating a new link between nutrition and cognition. An extensive screening study of the elderly faecal-derived microbiota was also undertaken to examine the prevalence of antimicrobial production by intestinal bacteria. A number of previously characterised bacteriocins were isolated (gassericin T, ABP-118, mutacin II, enterocin L-50 and enterocin P) in this study. Interestingly, a Lactobacillus crispatus strain was found to produce a potentially novel antimicrobial compound. Full genome sequencing of this strain revealed the presence of three loci which exhibited varying degrees of homology with the genes responsible for helveticin J production in Lb. helveticus. An additional study comparing the immunomodulatory capacity of ‘viable’ and ‘non-viable’ Bifidobacterium strains found that Bifidobacterium-fermented milks (BFMs) containing ‘non-viable’ cells could stimulate levels of IL-10 and TNF-α in a manner similar to those stimulated by BFMs containing ‘viable’ cells in vitro.
Resumo:
The obesity pandemic has become perhaps the most prevalent health issue of our time, with more than 10% of the world’s population now being obese. Obesity can be defined as abnormal or excess fat accumulation that may impair health and results from an imbalance between energy intake and energy expenditure. A decrease in physical activity due to an increase in sedentary forms of work, changing modes of transport and increasing urbanization is likely a major contributory factor. Diet is another major factor with the increased availability and intake of calorie dense, high fat foods being of global concern. Notably, with respect to this thesis, over the last decade advances in the field of next generation sequencing (NGS) have facilitated investigations to determine the relationship between the gut microbiota and obesity. This thesis examines the impact of a variety of factors on the obesity associated gut microbiota. Overall the results presented in this thesis highlight that microbial diversity is influenced by diet, exercise, antibiotics and disease state, however it is only through further understanding of the structure and function that we can identify targets that can impact on health.
Resumo:
Establishment of the intestinal microbiota commences at birth and this colonisation is influenced by a number of factors including mode of delivery, gestational age, mode of feeding, environmental factors and host genetics. As this initial establishment may well influence the health of an individual later in life, it is imperative to understand this process. Therefore, this thesis set out to investigate how early infant nutrition influences the development of a healthy gut microbiota. As part of the INFANTMET project, the intestinal microbiota of 199 breastfed infants was investigated using both culture-dependent and culture-independent approaches. This study revealed that delivery mode and gestational age had a significant impact on early microbial communities. In order to understand host genotype-microbiota interactions, the gut microbiota composition of dichorionic triplets was also investigated. The results suggested that initially host genetics play a significant role in the composition of an individual’s gut microbiota, but by month 12 environmental factors are the major determinant. To investigate the origin of hydrogen sulphide in a case of nondrug- induced sulfhemoglobinemia in a preterm infant, the gut microbiota composition was determined. This analysis revealed the presence of Morganella morganii, a producer of hydrogen sulphide and hemolysins, at a relative abundance 38%, which was not detected in control infants. Following on from this, the negative and short term consequences of intrapartum antibiotic prophylaxis exposure on the early infant intestinal microbiota composition were demonstrated, particularly in breast-fed infants, which are recovered by day 30. Finally, the composition of the breast milk microbiota over the first three months of life was characterised. A core of 12 genera were identified amongst women and the remainder comprised some 195 genera which were individual specific and subject to variations over time. The results presented in this thesis have demonstrated that the development of the infant gut microbiota is complex and highly individual. Clear alterations in the intestinal microbiota establishment process in C-section delivered, preterm and antibiotic exposed infants were shown. Taken together, long-term health benefits for infants, particularly those vulnerable groups, may be conferred through the design of probiotic and prebiotic food ingredients and supplements.
Resumo:
Antibiotic resistance is an increasing threat to our ability to treat infectious diseases. Thus, understanding the effects of antibiotics on the gut microbiota, as well as the potential for such populations to act as a reservoir for resistance genes, is imperative. This thesis set out to investigate the gut microbiota of antibiotic treated infants compared to untreated controls using high-throughput DNA sequencing. The results demonstrated the significant effects of antibiotic treatment, resulting in increased proportions of Proteobacteria and decreased proportions of Bifidobacterium. The species diversity of bifidobacteria was also reduced. This thesis also highlights the ability of the human gut microbiota to act as an antibiotic resistance reservoir. Using metagenomic DNA extracted from faecal samples from adult males, PCR was employed to demonstrate the prevalence and diversity of aminoglycoside and β-lactam resistance genes in the adult gut microbiota and highlighted the merits of the approach adopted. Using infant faecal samples, we constructed and screened a second fosmid metagenomic bank for the same families of resistance genes and demonstrated that the infant gut microbiota is also a reservoir for resistance genes. Using in silico analysis we highlighted the existence of putative aminoglycoside and β-lactam resistance determinants within the genomes of Bifidobacterium species. In the case of the β- lactamases, these appear to be mis-annotated. However, through homologous recombination-mediated insertional inactivation, we have demonstrated that the putative aminoglycoside resistance proteins do contribute to resistance. In additional studies, we investigated the effects of short bowel syndrome on infant gut microbiota, the immune system and bile acid metabolism. We also sequenced the microbiota of the human vermiform appendix, highlighting its complexity. Finally, this thesis demonstrated the strain specific nature of 2 different probiotic CLA-producing Bifidobacterium breve on the murine gut microbiota.
Resumo:
Advances in culture independent technologies over the last decade have highlighted the pivotal role which the gut microbiota plays in maintaining human health. Conversely, perturbations to the composition or actions of the ‘normal/functioning’ microbiota have been frequently associated with the pathogenesis of several disease states. Therefore the selective modulation of enteric microbial communities represents a viable target for the development of novel treatments for such diseases. Notably, while bovine whey proteins and exercise have been shown to positively influence several physiological processes, such as energy balance, their effect on the composition or functionality of the gut microbiota remains largely unknown. In this thesis, a variety of ex vivo, murine and human models are used in conjunction with high-throughput DNA sequencing-based analysis to provide valuable and novel insights into the impact of both whey proteins and exercise on enteric microbial communities. Overall the results presented in this thesis highlight that the consumption both whey protein isolate (WPI), and individual component proteins of whey such as bovine serum albumin (BSA) and lactoferrin, reduce high fat diet associated body weight gain and are associated with beneficial alterations within the murine gut microbiota. Although the impact of exercise on enteric microbial communities remains less clear, it may be that longer term investigations are required for the true effect of exercise on the gut microbiota to be fully elucidated.
Resumo:
The significance of the gut microbiota as a determinant of drug pharmacokinetics and accordingly therapeutic response is of increasing importance with the advent of modern medicines characterised by low solubility and/or permeability, or modified-release. These physicochemical properties and release kinetics prolong drug residence times within the gastrointestinal tract, wherein biotransformation by commensal microbes can occur. As the evidence base in support of this supplementary metabolic “organ” expands, novel opportunities to engineer the microbiota for clinical benefit have emerged. This review provides an overview of microbe-mediated alteration of drug pharmacokinetics, with particular emphasis on studies demonstrating proof of concept in vivo. Additionally, recent advances in modulating the microbiota to improve clinical response to therapeutics are explored.
Resumo:
There is a growing recognition of the importance of the commensal intestinal microbiota in the development and later function of the central nervous system. Research using germ-free mice (mice raised without any exposure to microorganisms) has provided some of the most persuasive evidence for a role of these bacteria in gut-brain signalling. Key findings show that the microbiota is necessary for normal stress responsivity, anxiety-like behaviors, sociability, and cognition. Furthermore, the microbiota maintains central nervous system homeostasis by regulating immune function and blood brain barrier integrity. Studies have also found that the gut microbiota influences neurotransmitter, synaptic, and neurotrophic signalling systems and neurogenesis. The principle advantage of the germ-free mouse model is in proof-of-principle studies and that a complete microbiota or defined consortiums of bacteria can be introduced at various developmental time points. However, a germ-free upbringing can induce permanent neurodevelopmental deficits that may deem the model unsuitable for specific scientific queries that do not involve early-life microbial deficiency. As such, alternatives and complementary strategies to the germ-free model are warranted and include antibiotic treatment to create microbiota-deficient animals at distinct time points across the lifespan. Increasing our understanding of the impact of the gut microbiota on brain and behavior has the potential to inform novel management strategies for stress-related gastrointestinal and neuropsychiatric disorders.
Resumo:
Gut microbiota colonization is a key event for host physiology that occurs early in life. Disruption of this process leads to altered brain development which ultimately manifests as changes in brain function and behaviour in adulthood. Studies using germ-free mice highlight the extreme impact on brain health that results from life without commensal microbes, however the impact of microbiota disturbances occurring in adulthood is less studied. To this end, we depleted the gut microbiota of 10-week-old male Sprague Dawley rats via chronic antibiotic treatment. Following this marked, sustained depletion of the gut bacteria, we investigated behavioural and molecular hallmarks of gut-brain communication. Our results reveal that depletion of the gut microbiota during adulthood results in deficits in spatial memory as tested by Morris water maze, increased visceral sensitivity and a greater display of depressive-like behaviours in the forced swim test. In tandem with these clear behavioural alterations we found change in altered CNS serotonin concentration along with changes in the mRNA levels of corticotrophin releasing hormone receptor 1 and glucocorticoid receptor. Additionally, we found changes in the expression of BDNF, a hallmark of altered microbiota-gut-brain axis signaling. In summary, this model of antibiotic-induced depletion of the gut microbiota can be used for future studies interested in the impact of the gut microbiota on host health without the confounding developmental influence of early-life microbial alterations.
Resumo:
The nascent gut microbiota at birth is established in concert with numerous developmental parameters. Here, in the INFAMTET study, we chronicled the impact of some factors which are key determinants of the infant gut microbiota, namely; mode of birth, gestational age, and type of feeding. We determined that the aggregated microbiota profile of naturally delivered, initially breastfed infants are relatively stable from one week to six months of age and are not significantly altered by increased duration of breastfeeding. Contrastingly, there is significant development of the microbiota profile of C-section delivered infants, and this development is significantly influenced by breastfeeding duration. Preterm infants, born by either mode of birth, initially have a high proportion of Proteobacteria, and demonstrate significant development of the gut microbiota from week 1 to later time-points. The microbiota is still slightly, but significantly, affected by birth mode at one year of age although no specific genera were found to be significantly altered in relative abundance. By two years of age, there is no effect of either birth mode or gestational age. However this does not preclude the possibility that symptoms developed later in life, which are associated with preterm or C-section birth, are as a result of the early perturbation of the neonatal gut microbiota. It is likely that the combination of relatively low exposure (breast fed), high exposure (formula fed) or delayed exposure (C-section and preterm) to specific antigens and the resulting inflammatory responses, in this crucial window of host-microbiota interaction, influence systemic health of the individual throughout life.
Resumo:
The human gastrointestinal (GI) tract is colonized by a dense and diverse bacterial community, the commensal microbiota, which plays an important role in the overall health of individuals. This microbiota is relatively stable throughout adult life, but may fluctuate over time with aging and disease. The adaptation of the gut microbiota to our changing life-style is probably the reason for the large inter-individual variation observed among different people. Since the gut microbiota plays an essential role in interactions with host metabolism, it is of utmost importance to explore this relationship. The elderly intestinal microbiota has been the subject of a number of studies in recent years. The results presented in this thesis have further contributed to the expansion of knowledge related to gut microbiota research highlighting the combined effect of culture based and molecular methods as powerful tools for understanding the true impact of microbes. The degree of correlation between measurements from both methods suggested that a single method is capable of profiling intestinal Bifidobacterium spp., Lactobacillus spp. and Enterobacteriaceae populations. Bacteriocins have shown great promise as alternatives to traditional antibiotics. In this respect, the isolation and characterisation of bacteriocinogenic strains are important due to growing evidence indicating bacteriocin production as a potential probiotic trait by virtue of strain dominance and/or pathogen inhibition in the mammalian intestine. The selection pressure applied on the bacterial population during antibiotic usage is the driving force for the emergence of antibiotic resistant bacteria. Identification of antibiotic resistant isolates opens up the possibility of using such probiotics to offset the problems caused by antibiotics to the gut microbiota and to improve the intestinal microbial environment. Future work is required to explore the culture collection housing thousands of bacterial isolates as a valuable source of potential probiotics for use for the elderly Irish community.
Resumo:
The ability to adapt to and respond to increases in external osmolarity is an important characteristic that enables bacteria to survive and proliferate in different environmental niches. When challenged with increased osmolarity, due to sodium chloride (NaCl) for example, bacteria elicit a phased response; firstly via uptake of potassium (K+), which is known as the primary response. This primary response is followed by the secondary response which is characterised by the synthesis or uptake of compatible solutes (osmoprotectants). The overall osmotic stress response is much broader however, involving many diverse cellular systems and processes. These ancillary mechanisms are arguably more interesting and give a more complete view of the osmotic stress response. The aim of this thesis was to identify novel genetic loci from the human gut microbiota that confer increased tolerance to osmotic stress using a functional metagenomic approach. Functional metagenomics is a powerful tool that enables the identification of novel genes from as yet uncultured bacteria from diverse environments through cloning, heterologous expression and phenotypic identification of a desired trait. Functional metagenomics does not rely on any previous sequence information to known genes and can therefore enable the discovery of completely novel genes and assign functions to new or known genes. Using a functional metagenomic approach, we have assigned a novel function to previously annotated genes; murB, mazG and galE, as well as a putative brp/blh family beta-carotene 15,15’-monooxygenase. Finally, we report the identification of a completely novel salt tolerance determinant with no current known homologues in the databases. Overall the genes identified originate from diverse taxonomic and phylogenetic groups commonly found in the human gastrointestinal (GI) tract, such as Collinsella and Eggerthella, Akkermansia and Bacteroides from the phyla Actinobacteria, Verrucomicrobia and Bacteroidetes, respectively. In addition, a number of the genes appear to have been acquired via lateral gene transfer and/or encoded on a prophage. To our knowledge, this thesis represents the first investigation to identify novel genes from the human gut microbiota involved in the bacterial osmotic stress response.
Resumo:
Background: Alterations in intestinal microbiota have been correlated with a growing number of diseases. Investigating the faecal microbiota is widely used as a non-invasive and ethically simple proxy for intestinal biopsies. There is an urgent need for collection and transport media that would allow faecal sampling at distance from the processing laboratory, obviating the need for same-day DNA extraction recommended by previous studies of freezing and processing methods for stool. We compared the faecal bacterial DNA quality and apparent phylogenetic composition derived using a commercial kit for stool storage and transport (DNA Genotek OMNIgene GUT) with that of freshly extracted samples, 22 from infants and 20 from older adults. Results: Use of the storage vials increased the quality of extracted bacterial DNA by reduction of DNA shearing. When infant and elderly datasets were examined separately, no differences in microbiota composition were observed due to storage. When the two datasets were combined, there was a difference according to a Wilcoxon test in the relative proportions of Faecalibacterium, Sporobacter, Clostridium XVIII, and Clostridium XlVa after 1 week's storage compared to immediately extracted samples. After 2 weeks' storage, Bacteroides abundance was also significantly different, showing an apparent increase from week 1 to week 2. The microbiota composition of infant samples was more affected than that of elderly samples by storage, with significantly higher Spearman distances between paired freshly extracted and stored samples (p
Resumo:
The human body is colonized by an enormous population of bacteria (microbiota) that provides the host with coding capacity and metabolic activities. Among the human gut microbiota are health-promoting indigenous species (probiotic bacteria) that are commonly consumed as live dietary supplements. Recent genomics-based studies (probiogenomics) are starting to provide insights into how probiotic bacteria sense and adapt to the gastrointestinal tract environment. In this Review, we discuss the application of probiogenomics in the elucidation of the molecular basis of probiosis using the well-recognized model probiotic bacteria genera Bifidobacterium and Lactobacillus as examples.
Resumo:
Catabolic flexibility affords a bacterium the ability to utilise different sugar sources as carbon for energy. This is important for commensal lactobacilli like Lactobacillus ruminis which can be exposed to a variety of carbohydrates in vivo. However, little is known about the fermentation capabilities, metabolic pathways, genetic diversity or potential survival mechanisms used by L. ruminis in vivo. A combination of in vitro and in silico techniques was used to identify the catabolic pathways of L. ruminis. I also compared 16 L. ruminis strains using a panel of biochemical and survival assays, genetically, whole genome sequencing and RNA sequencing. Multi locus sequence typing revealed that strains clustered according to their host sources. Transcriptome analysis by RNAseq of two motile strains under three growth conditions, including swarming, identified the up-regulation of carbohydrate-related genes under swarming conditions. This suggests that carbohydrate flexibility may have an uncharacterised role in L. ruminis swarming. Following on from the assessment of L. ruminis catabolic flexibility, the porcine diet was supplemented with galactooligosaccharides or L. ruminis ATCC 25644 plus galactooligosaccharides. Supplementation of the porcine diet with galactooligosaccharide had no effect on microbiota diversity. In contrast, the L. ruminis plus galactooligosaccharide treatment significantly reduced the microbiota diversity. Diet is a major factor that affects the diversity of the gut microbiota. In order to get a more thorough understanding of diet and gut health in animals such as racehorses and domesticated herbivores, I determined the core microbiota of animals consuming different feeds. Interestingly, the gut microbiota diversity correlated with the host phylogeny of the animal. The genome of Lactobacillus equi (2.19 Mb), isolated from a healthy Irish thoroughbred was also sequenced and annotated, and comprised 2,263 predicted genes. The large repertoire of predicted carbohydrate-related genes may offer L. equi an advantage in the complex and harsh hindgut environment. In summary, this thesis uses functional genomics to assess the effect that carbohydrates have on commensal lactobacilli and the microbiota as a whole.