3 resultados para gold surface cleaning
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This work explores the functionalization of an organic-inorganic MoS2 lamellar compound, prepared by a Chemical Liquid Deposition Method (CLD), that has an interlamellar distance of ~5.2 nm, using clusters of gold nanoparticles. The gold nanoparticles have a mean diameter of 1.2 nm, a stability of ~85 days, and a zeta potential measured to be ζ = -6.8 mV (solid). The nanoparticles are localized in the hydrophilic zones, defined by the presence of amine groups of the surfactant between the lamella of MoS2. SEM, TEM, EDAX and electron diffraction provide conclusive evidence of the interlamellar insertion of the gold nanoparticles in the MoS2.
Resumo:
We report the results of a study into the factors controlling the quality of nanolithographic imaging. Self-assembled monolayer (SAM) coverage, subsequent postetch pattern definition, and minimum feature size all depend on the quality of the Au substrate used in material mask atomic nanolithographic experiments. We find that sputtered Au substrates yield much smoother surfaces and a higher density of {111}-oriented grains than evaporated Au surfaces. Phase imaging with an atomic force microscope shows that the quality and percentage coverage of SAM adsorption are much greater for sputtered Au surfaces. Exposure of the self-assembled monolayer to an optically cooled atomic Cs beam traversing a two-dimensional array of submicron material masks mounted a few microns above the self-assembled monolayer surface allowed determination of the minimum average Cs dose (2 Cs atoms per self-assembled monolayer molecule) to write the monolayer. Suitable wet etching, with etch rates of 2.2 nm min-1, results in optimized pattern definition. Utilizing these optimizations, material mask features as small as 230 nm in diameter with a fractional depth gradient of 0.820 nm were realized.
Resumo:
A detailed study of the self-assembly and coverage by 1-nonanethiol of sputtered Au surfaces using molecular resolution atomic force microscopy (AFM) and scanning tunneling microscopy (STM) is presented. The monolayer self-assembles on a smooth Au surface composed predominantly of {111} oriented grains. The domains of the alkanethiol monolayer are observed with sizes typically of 5-25 nm, and multiple molecular domains can exist within one Au grain. STM imaging shows that the (4 × 2) superlattice structure is observed as a (3 × 2√3) structure when imaged under noncontact AFM conditions. The 1-nonanethiol molecules reside in the threefold hollow sites of the Au{111} lattice and aligned along its lattice vectors. The self-assembled monolayer (SAM) contains many nonuniformities such as pinholes, domain boundaries, and monatomic depressions which are present in the Au surface prior to SAM adsorption. The detailed observations demonstrate limitations to the application of 1-nonanethiol as a resist in atomic nanolithography experiments to feature sizes of ∼20 nm.