4 resultados para electrostatic spinning

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work focuses on development of electrostatic supercapacitors (ESCs) using process routes compatible with complementary metal–oxide–semiconductor (CMOS) fabrication. Wafer-scale anodised aluminium oxide (AAO) processing techniques have been developed to produce high-surface area templates. Statistically optimised atomic layer deposition (ALD) processes have been developed to conformally coat the templates and generate metalinsulator-metal capacitor structures. Detailed electrical characterisation and analysis for a range of devices, revealed ESC’s with high capacitance densities of ~12 μF cm-2 and equivalent energy densities of 0.28 Wh/kg . Finally the suitability of ESC’s toward next generation energy storage applications is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wind energy is the energy source that contributes most to the renewable energy mix of European countries. While there are good wind resources throughout Europe, the intermittency of the wind represents a major problem for the deployment of wind energy into the electricity networks. To ensure grid security a Transmission System Operator needs today for each kilowatt of wind energy either an equal amount of spinning reserve or a forecasting system that can predict the amount of energy that will be produced from wind over a period of 1 to 48 hours. In the range from 5m/s to 15m/s a wind turbine’s production increases with a power of three. For this reason, a Transmission System Operator requires an accuracy for wind speed forecasts of 1m/s in this wind speed range. Forecasting wind energy with a numerical weather prediction model in this context builds the background of this work. The author’s goal was to present a pragmatic solution to this specific problem in the ”real world”. This work therefore has to be seen in a technical context and hence does not provide nor intends to provide a general overview of the benefits and drawbacks of wind energy as a renewable energy source. In the first part of this work the accuracy requirements of the energy sector for wind speed predictions from numerical weather prediction models are described and analysed. A unique set of numerical experiments has been carried out in collaboration with the Danish Meteorological Institute to investigate the forecast quality of an operational numerical weather prediction model for this purpose. The results of this investigation revealed that the accuracy requirements for wind speed and wind power forecasts from today’s numerical weather prediction models can only be met at certain times. This means that the uncertainty of the forecast quality becomes a parameter that is as important as the wind speed and wind power itself. To quantify the uncertainty of a forecast valid for tomorrow requires an ensemble of forecasts. In the second part of this work such an ensemble of forecasts was designed and verified for its ability to quantify the forecast error. This was accomplished by correlating the measured error and the forecasted uncertainty on area integrated wind speed and wind power in Denmark and Ireland. A correlation of 93% was achieved in these areas. This method cannot solve the accuracy requirements of the energy sector. By knowing the uncertainty of the forecasts, the focus can however be put on the accuracy requirements at times when it is possible to accurately predict the weather. Thus, this result presents a major step forward in making wind energy a compatible energy source in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work by employing numerical three-dimensional simulations we study the electrical performance and short channel behavior of several multi-gate transistors based on advanced SOI technology. These include FinFETs, triple-gate and gate-all-around nanowire FETs with different channel material, namely Si, Ge, and III-V compound semiconductors, all most promising candidates for future nanoscale CMOS technologies. Also, a new type of transistor called “junctionless nanowire transistor” is presented and extensive simulations are carried out to study its electrical characteristics and compare with the conventional inversion- and accumulation-mode transistors. We study the influence of device properties such as different channel material and orientation, dimensions, and doping concentration as well as quantum effects on the performance of multi-gate SOI transistors. For the modeled n-channel nanowire devices we found that at very small cross sections the nanowires with silicon channel are more immune to short channel effects. Interestingly, the mobility of the channel material is not as significant in determining the device performance in ultrashort channels as other material properties such as the dielectric constant and the effective mass. Better electrostatic control is achieved in materials with smaller dielectric constant and smaller source-to-drain tunneling currents are observed in channels with higher transport effective mass. This explains our results on Si-based devices. In addition to using the commercial TCAD software (Silvaco and Synopsys TCAD), we have developed a three-dimensional Schrödinger-Poisson solver based on the non-equilibrium Green’s functions formalism and in the framework of effective mass approximation. This allows studying the influence of quantum effects on electrical performance of ultra-scaled devices. We have implemented different mode-space methodologies in our 3D quantum-mechanical simulator and moreover introduced a new method to deal with discontinuities in the device structures which is much faster than the coupled-mode-space approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the properties of strained tetrahedrally bonded materials are explored theoretically, with special focus on group-III nitrides. In order to do so, a multiscale approach is taken: accurate quantitative calculations of material properties are carried out in a quantum first-principles frame, for small systems. These properties are then extrapolated and empirical methods are employed to make predictions for larger systems, such as alloys or nanostructures. We focus our attention on elasticity and electric polarization in semiconductors. These quantities serve as input for the calculation of the optoelectronic properties of these systems. Regarding the methods employed, our first-principles calculations use highly- accurate density functional theory (DFT) within both standard Kohn-Sham and generalized (hybrid functional) Kohn-Sham approaches. We have developed our own empirical methods, including valence force field (VFF) and a point-dipole model for the calculation of local polarization and local polarization potential. Our local polarization model gives insight for the first time to local fluctuations of the electric polarization at an atomistic level. At the continuum level, we have studied composition-engineering optimization of nitride nanostructures for built-in electrostatic field reduction, and have developed a highly efficient hybrid analytical-numerical staggered-grid computational implementation of continuum elasticity theory, that is used to treat larger systems, such as quantum dots.