8 resultados para differential fault attack
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Since Wireless Sensor Networks (WSNs) are subject to failures, fault-tolerance becomes an important requirement for many WSN applications. Fault-tolerance can be enabled in different areas of WSN design and operation, including the Medium Access Control (MAC) layer and the initial topology design. To be robust to failures, a MAC protocol must be able to adapt to traffic fluctuations and topology dynamics. We design ER-MAC that can switch from energy-efficient operation in normal monitoring to reliable and fast delivery for emergency monitoring, and vice versa. It also can prioritise high priority packets and guarantee fair packet deliveries from all sensor nodes. Topology design supports fault-tolerance by ensuring that there are alternative acceptable routes to data sinks when failures occur. We provide solutions for four topology planning problems: Additional Relay Placement (ARP), Additional Backup Placement (ABP), Multiple Sink Placement (MSP), and Multiple Sink and Relay Placement (MSRP). Our solutions use a local search technique based on Greedy Randomized Adaptive Search Procedures (GRASP). GRASP-ARP deploys relays for (k,l)-sink-connectivity, where each sensor node must have k vertex-disjoint paths of length ≤ l. To count how many disjoint paths a node has, we propose Counting-Paths. GRASP-ABP deploys fewer relays than GRASP-ARP by focusing only on the most important nodes – those whose failure has the worst effect. To identify such nodes, we define Length-constrained Connectivity and Rerouting Centrality (l-CRC). Greedy-MSP and GRASP-MSP place minimal cost sinks to ensure that each sensor node in the network is double-covered, i.e. has two length-bounded paths to two sinks. Greedy-MSRP and GRASP-MSRP deploy sinks and relays with minimal cost to make the network double-covered and non-critical, i.e. all sensor nodes must have length-bounded alternative paths to sinks when an arbitrary sensor node fails. We then evaluate the fault-tolerance of each topology in data gathering simulations using ER-MAC.
Resumo:
This thesis is concerned with uniformly convergent finite element and finite difference methods for numerically solving singularly perturbed two-point boundary value problems. We examine the following four problems: (i) high order problem of reaction-diffusion type; (ii) high order problem of convection-diffusion type; (iii) second order interior turning point problem; (iv) semilinear reaction-diffusion problem. Firstly, we consider high order problems of reaction-diffusion type and convection-diffusion type. Under suitable hypotheses, the coercivity of the associated bilinear forms is proved and representation results for the solutions of such problems are given. It is shown that, on an equidistant mesh, polynomial schemes cannot achieve a high order of convergence which is uniform in the perturbation parameter. Piecewise polynomial Galerkin finite element methods are then constructed on a Shishkin mesh. High order convergence results, which are uniform in the perturbation parameter, are obtained in various norms. Secondly, we investigate linear second order problems with interior turning points. Piecewise linear Galerkin finite element methods are generated on various piecewise equidistant meshes designed for such problems. These methods are shown to be convergent, uniformly in the singular perturbation parameter, in a weighted energy norm and the usual L2 norm. Finally, we deal with a semilinear reaction-diffusion problem. Asymptotic properties of solutions to this problem are discussed and analysed. Two simple finite difference schemes on Shishkin meshes are applied to the problem. They are proved to be uniformly convergent of second order and fourth order respectively. Existence and uniqueness of a solution to both schemes are investigated. Numerical results for the above methods are presented.
Resumo:
This thesis is concerned with uniformly convergent finite element methods for numerically solving singularly perturbed parabolic partial differential equations in one space variable. First, we use Petrov-Galerkin finite element methods to generate three schemes for such problems, each of these schemes uses exponentially fitted elements in space. Two of them are lumped and the other is non-lumped. On meshes which are either arbitrary or slightly restricted, we derive global energy norm and L2 norm error bounds, uniformly in the diffusion parameter. Under some reasonable global assumptions together with realistic local assumptions on the solution and its derivatives, we prove that these exponentially fitted schemes are locally uniformly convergent, with order one, in a discrete L∞norm both outside and inside the boundary layer. We next analyse a streamline diffusion scheme on a Shishkin mesh for a model singularly perturbed parabolic partial differential equation. The method with piecewise linear space-time elements is shown, under reasonable assumptions on the solution, to be convergent, independently of the diffusion parameter, with a pointwise accuracy of almost order 5/4 outside layers and almost order 3/4 inside the boundary layer. Numerical results for the above schemes are presented. Finally, we examine a cell vertex finite volume method which is applied to a model time-dependent convection-diffusion problem. Local errors away from all layers are obtained in the l2 seminorm by using techniques from finite element analysis.
Resumo:
Increased plasmin and plasminogen levels and elevated somatic cell counts (SCC) and polymorphonuclear leucocyte levels (PMN) were evident in late lactation milk. Compositional changes in these milks were associated with increased SCC. The quality of late lactation milks was related to nutritional status of herds, with milks from herds on a high plane of nutrition having composition and clotting properties similar to, or superior to, early-mid lactation milks. Nutritionally-deficient cows had elevated numbers of polymorphonuclear leucocytes (PMNs) in their milk, elevated plasmin levels and increased overall proteolytic activity. The dominant effect of plasmin on proteolysis in milks of low SCC was established. When present in elevated numbers, somatic cells and PMNs in particular had a more significant influence on the proteolysis of both raw and pasteurised milks than plasmin. PMN protease action on the caseins showed proteolysis products of two specific enzymes, cathepsin B and elastase, which were also shown in high SCC milk. Crude extracts of somatic cells had a high specificity on αs1-casein. Cheeses made from late lactation milks had increased breakdown of αs1-casein, suggestive of the action of somatic cell proteinases, which may be linked to textural defects in cheese. Late lactation cheeses also showed decreased production of small peptides and amino acids, the reason for which is unknown. Plasmin, which is elevated in activity in late lactation milk, accelerated the ripening of Gouda-type cheese, but was not associated with defects of texture or flavour. The retention of somatic cell enzymes in cheese curd was confirmed, and a potential role in production of bitter peptides identified. Cheeses made from milks containing high levels of PMNs had accelerated αs1-casein breakdown relative to cheeses made from low PMN milk of the same total SCC, consistent with the demonstrated action of PMN proteinases. The two types of cheese were determined significantly different by blind triangle testing.
Resumo:
Many deterministic models with hysteresis have been developed in the areas of economics, finance, terrestrial hydrology and biology. These models lack any stochastic element which can often have a strong effect in these areas. In this work stochastically driven closed loop systems with hysteresis type memory are studied. This type of system is presented as a possible stochastic counterpart to deterministic models in the areas of economics, finance, terrestrial hydrology and biology. Some price dynamics models are presented as a motivation for the development of this type of model. Numerical schemes for solving this class of stochastic differential equation are developed in order to examine the prototype models presented. As a means of further testing the developed numerical schemes, numerical examination is made of the behaviour near equilibrium of coupled ordinary differential equations where the time derivative of the Preisach operator is included in one of the equations. A model of two phenotype bacteria is also presented. This model is examined to explore memory effects and related hysteresis effects in the area of biology. The memory effects found in this model are similar to that found in the non-ideal relay. This non-ideal relay type behaviour is used to model a colony of bacteria with multiple switching thresholds. This model contains a Preisach type memory with a variable Preisach weight function. Shown numerically for this multi-threshold model is a pattern formation for the distribution of the phenotypes among the available thresholds.
Resumo:
The Gastro-Intestinal (GI) tract is a unique region in the body. Our innate immune system retains a fine homeostatic balance between avoiding inappropriate inflammatory responses against the myriad commensal microbes residing in the gut while also remaining active enough to prevent invasive pathogenic attack. The intestinal epithelium represents the frontline of this interface. It has long been known to act as a physical barrier preventing the lumenal bacteria of the gastro-intestinal tract from activating an inflammatory immune response in the immune cells of the underlying mucosa. However, in recent years, an appreciation has grown surrounding the role played by the intestinal epithelium in regulating innate immune responses, both in the prevention of infection and in maintaining a homeostatic environment through modulation of innate immune signalling systems. The aim of this thesis was to identify novel innate immune mechanisms regulating inflammation in the GI tract. To achieve this aim, we chose several aspects of regulatory mechanisms utilised in this region by the innate immune system. We identified several commensal strains of bacteria expressing proteins containing signalling domains used by Pattern Recognition Receptors (PRRs) of the innate immune system. Three such bacterial proteins were studied for their potentially subversive roles in host innate immune signalling as a means of regulating homeostasis in the GI tract. We also examined differential responses to PRR activation depending on their sub-cellular localisation. This was investigated based on reports that apical Toll-Like Receptor (TLR) 9 activation resulted in abrogation of inflammatory responses mediated by other TLRs in Intestinal Epithelial Cells (IECs) such as basolateral TLR4 activation. Using the well-studied invasive intra-cellular pathogen Listeria monocytogenes as a model for infection, we also used a PRR siRNA library screening technique to identify novel PRRs used by IECs in both inhibition and activation of inflammatory responses. Many of the PRRs identified in this screen were previously believed not to be expressed in IECs. Furthermore, the same study has led to the identification of the previously uncharacterised TLR10 as a functional inflammatory receptor of IECs. Further analysis revealed a similar role in macrophages where it was shown to respond to intracellular and motile pathogens such as Gram-positive L.monocytogenes and Gram negative Salmonella typhimurium. TLR10 expression in IECs was predominantly intracellular. This is likely in order to avoid inappropriate inflammatory activation through the recognition of commensal microbial antigens on the apical cell surface of IECs. Moreover, these results have revealed a more complex network of innate immune signalling mechanisms involved in both activating and inhibiting inflammatory responses in IECs than was previously believed. This contribution to our understanding of innate immune regulation in this region has several direct and indirect benefits. The identification of several novel PRRs involved in activating and inhibiting inflammation in the GI tract may be used as novel therapeutic targets in the treatment of disease; both for inducing tolerance and reducing inflammation, or indeed, as targets for adjuvant activation in the development of oral vaccines against pathogenic attack.
Resumo:
Traditionally, attacks on cryptographic algorithms looked for mathematical weaknesses in the underlying structure of a cipher. Side-channel attacks, however, look to extract secret key information based on the leakage from the device on which the cipher is implemented, be it smart-card, microprocessor, dedicated hardware or personal computer. Attacks based on the power consumption, electromagnetic emanations and execution time have all been practically demonstrated on a range of devices to reveal partial secret-key information from which the full key can be reconstructed. The focus of this thesis is power analysis, more specifically a class of attacks known as profiling attacks. These attacks assume a potential attacker has access to, or can control, an identical device to that which is under attack, which allows him to profile the power consumption of operations or data flow during encryption. This assumes a stronger adversary than traditional non-profiling attacks such as differential or correlation power analysis, however the ability to model a device allows templates to be used post-profiling to extract key information from many different target devices using the power consumption of very few encryptions. This allows an adversary to overcome protocols intended to prevent secret key recovery by restricting the number of available traces. In this thesis a detailed investigation of template attacks is conducted, along with how the selection of various attack parameters practically affect the efficiency of the secret key recovery, as well as examining the underlying assumption of profiling attacks in that the power consumption of one device can be used to extract secret keys from another. Trace only attacks, where the corresponding plaintext or ciphertext data is unavailable, are then investigated against both symmetric and asymmetric algorithms with the goal of key recovery from a single trace. This allows an adversary to bypass many of the currently proposed countermeasures, particularly in the asymmetric domain. An investigation into machine-learning methods for side-channel analysis as an alternative to template or stochastic methods is also conducted, with support vector machines, logistic regression and neural networks investigated from a side-channel viewpoint. Both binary and multi-class classification attack scenarios are examined in order to explore the relative strengths of each algorithm. Finally these machine-learning based alternatives are empirically compared with template attacks, with their respective merits examined with regards to attack efficiency.
Resumo:
The contribution of buildings towards total worldwide energy consumption in developed countries is between 20% and 40%. Heating Ventilation and Air Conditioning (HVAC), and more specifically Air Handling Units (AHUs) energy consumption accounts on average for 40% of a typical medical device manufacturing or pharmaceutical facility’s energy consumption. Studies have indicated that 20 – 30% energy savings are achievable by recommissioning HVAC systems, and more specifically AHU operations, to rectify faulty operation. Automated Fault Detection and Diagnosis (AFDD) is a process concerned with potentially partially or fully automating the commissioning process through the detection of faults. An expert system is a knowledge-based system, which employs Artificial Intelligence (AI) methods to replicate the knowledge of a human subject matter expert, in a particular field, such as engineering, medicine, finance and marketing, to name a few. This thesis details the research and development work undertaken in the development and testing of a new AFDD expert system for AHUs which can be installed in minimal set up time on a large cross section of AHU types in a building management system vendor neutral manner. Both simulated and extensive field testing was undertaken against a widely available and industry known expert set of rules known as the Air Handling Unit Performance Assessment Rules (APAR) (and a later more developed version known as APAR_extended) in order to prove its effectiveness. Specifically, in tests against a dataset of 52 simulated faults, this new AFDD expert system identified all 52 derived issues whereas the APAR ruleset identified just 10. In tests using actual field data from 5 operating AHUs in 4 manufacturing facilities, the newly developed AFDD expert system for AHUs was shown to identify four individual fault case categories that the APAR method did not, as well as showing improvements made in the area of fault diagnosis.