3 resultados para b-Jet identification
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The fabrication of highly-oriented polycrystalline ceramics of Bi 5Fe 0.5Co 0.5Ti 3O 15, prepared via molten salt synthesis and uniaxial pressing of high aspect ratio platelets is reported. Electron backscatter images show a secondary phase within the ceramic which is rich in cobalt and iron. The concentration of the secondary phase obtained from scanning electron microscopy is estimated at less than 2% by volume, below the detection limit of x-ray diffraction (XRD). The samples were characterized by x-ray diffraction, polarization-electric field measurements, superconducting quantum interference device as a function of sample orientation and vibrating sample magnetometry as a function of temperature. It is inferred from the data that the observed ferromagnetic response is dominated by the secondary phase. This work highlights the importance of rigorous materials characterisation in the study of multiferroics as small amounts of secondary phase, below the limit of XRD, can lead to false conclusions.
Resumo:
This paper introduces a screw theory based method termed constraint and position identification (CPI) approach to synthesize decoupled spatial translational compliant parallel manipulators (XYZ CPMs) with consideration of actuation isolation. The proposed approach is based on a systematic arrangement of rigid stages and compliant modules in a three-legged XYZ CPM system using the constraint spaces and the position spaces of the compliant modules. The constraint spaces and the position spaces are firstly derived based on the screw theory instead of using the rigid-body mechanism design experience. Additionally, the constraint spaces are classified into different constraint combinations, with typical position spaces depicted via geometric entities. Furthermore, the systematic synthesis process based on the constraint combinations and the geometric entities is demonstrated via several examples. Finally, several novel decoupled XYZ CPMs with monolithic configurations are created and verified by finite elements analysis. The present CPI approach enables experts and beginners to synthesize a variety of decoupled XYZ CPMs with consideration of actuation isolation by selecting an appropriate constraint and an optimal position for each of the compliant modules according to a specific application.
Resumo:
Bifidobacteria constitute a specific group of commensal bacteria, typically found in the gastrointestinal tract (GIT) of humans and other mammals. Bifidobacterium breve strains are numerically prevalent among the gut microbiota of many healthy breast-fed infants. In the current study, we investigated glycosulfatase activity in a bacterial nursling stool isolate, B. breve UCC2003. Two putative sulfatases were identified on the genome of B. breve UCC2003. The sulfated monosaccharide N-acetylglucosamine-6-sulfate (GlcNAc-6-S) was shown to support growth of B. breve UCC2003, while, N-acetylglucosamine-3-sulfate, N-acetylgalactosamine-3-sulfate and N-acetylgalactosamine-6-sulfate, did not support appreciable growth. Using a combination of transcriptomic and functional genomic approaches, a gene cluster, designated ats2, was shown to be specifically required for GlcNAc-6-S metabolism. Transcription of the ats2 cluster is regulated by a ROK-family transcriptional repressor. This study represents the first description of glycosulfatase activity within the Bifidobacterium genus. Bifidobacteria are saccharolytic organisms naturally found in the digestive tract of mammals and insects. Bifidobacterium breve strains utilize a variety of plant and host-derived carbohydrates which allow them to be present as prominent members of the infant gut microbiota as well as being present in the gastrointestinal tract of adults. In this study, we introduce a previously unexplored area of carbohydrate metabolism in bifidobacteria, namely the metabolism of sulfated carbohydrates. B. breve UCC2003 was shown to metabolize N-acetylglucosamine-6-sulfate (GlcNAc-6-S) through one of two sulfatase-encoding gene clusters identified on its genome. GlcNAc-6-S can be found in terminal or branched positions of mucin oligosaccharides, the glycoprotein component of the mucous layer that covers the digestive tract. The results of this study provide further evidence of this species' ability to utilize mucin-derived sugars, a trait which may provide a competitive advantage in both the infant and adult gut.