4 resultados para Supply and product dimension
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
For two multinormal populations with equal covariance matrices the likelihood ratio discriminant function, an alternative allocation rule to the sample linear discriminant function when n1 ≠ n2 ,is studied analytically. With the assumption of a known covariance matrix its distribution is derived and the expectation of its actual and apparent error rates evaluated and compared with those of the sample linear discriminant function. This comparison indicates that the likelihood ratio allocation rule is robust to unequal sample sizes. The quadratic discriminant function is studied, its distribution reviewed and evaluation of its probabilities of misclassification discussed. For known covariance matrices the distribution of the sample quadratic discriminant function is derived. When the known covariance matrices are proportional exact expressions for the expectation of its actual and apparent error rates are obtained and evaluated. The effectiveness of the sample linear discriminant function for this case is also considered. Estimation of true log-odds for two multinormal populations with equal or unequal covariance matrices is studied. The estimative, Bayesian predictive and a kernel method are compared by evaluating their biases and mean square errors. Some algebraic expressions for these quantities are derived. With equal covariance matrices the predictive method is preferable. Where it derives this superiority is investigated by considering its performance for various levels of fixed true log-odds. It is also shown that the predictive method is sensitive to n1 ≠ n2. For unequal but proportional covariance matrices the unbiased estimative method is preferred. Product Normal kernel density estimates are used to give a kernel estimator of true log-odds. The effect of correlation in the variables with product kernels is considered. With equal covariance matrices the kernel and parametric estimators are compared by simulation. For moderately correlated variables and large dimension sizes the product kernel method is a good estimator of true log-odds.
Resumo:
In 1966, Roy Geary, Director of the ESRI, noted “the absence of any kind of import and export statistics for regions is a grave lacuna” and further noted that if regional analyses were to be developed then regional Input-Output Tables must be put on the “regular statistical assembly line”. Forty-five years later, the lacuna lamented by Geary still exists and remains the most significant challenge to the construction of regional Input-Output Tables in Ireland. The continued paucity of sufficient regional data to compile effective regional Supply and Use and Input-Output Tables has retarded the capacity to construct sound regional economic models and provide a robust evidence base with which to formulate and assess regional policy. This study makes a first step towards addressing this gap by presenting the first set of fully integrated, symmetric, Supply and Use and domestic Input-Output Tables compiled for the NUTS 2 regions in Ireland: The Border, Midland and Western region and the Southern & Eastern region. These tables are general purpose in nature and are consistent fully with the official national Supply & Use and Input-Output Tables, and the regional accounts. The tables are constructed using a survey-based or bottom-up approach rather than employing modelling techniques, yielding more robust and credible tables. These tables are used to present a descriptive statistical analysis of the two administrative NUTS 2 regions in Ireland, drawing particular attention to the underlying structural differences of regional trade balances and composition of Gross Value Added in those regions. By deriving regional employment multipliers, Domestic Demand Employment matrices are constructed to quantify and illustrate the supply chain impact on employment. In the final part of the study, the predictive capability of the Input-Output framework is tested over two time periods. For both periods, the static Leontief production function assumptions are relaxed to allow for labour productivity. Comparative results from this experiment are presented.
Resumo:
Chinese sports are developing under very complex and unique political, economic, and cultural circumstances in the global age. This study aims to investigate the process of globalization in basketball through an examination of its multidimensional manifestations. The study aligns itself with Ritzer’s (2003, 2007b) conceptualization of dichotomizing the process of globalization into grobalization and glocalization. On that basis, the trajectory of basketball globalization in China is identified as the result of a contextual and competing interplay between the penetration of the NBA and the consequent engagement of Chinese basketball. A qualitative methodological approach was conducted to achieve the research aim. Data were collected from a number of sources, including official documents and semi-structured interviews with relevant basketball participants. The study reveals that globalization and basketball in China, in the political and institutional dimension, is a conflicting process. The universalization of the NBA’s governance model could not be fully assimilated due to the centralization of power in the Chinese government, which is hindering the further professionalization and marketization of basketball. In the economic dimension, the globalization process is seen to interplay with the local basketball market, which is growing thanks to the adaption of the NBA’s marketing strategies. In the cultural dimension, the study demonstrates that the NBA has to some extent cosmopolitanized and consumerized Chinese basketball culture, while resistance from both the state and the Chinese people has risen, creolizing the globalization of basketball culture in China.
Resumo:
Wind power generation differs from conventional thermal generation due to the stochastic nature of wind. Thus wind power forecasting plays a key role in dealing with the challenges of balancing supply and demand in any electricity system, given the uncertainty associated with the wind farm power output. Accurate wind power forecasting reduces the need for additional balancing energy and reserve power to integrate wind power. Wind power forecasting tools enable better dispatch, scheduling and unit commitment of thermal generators, hydro plant and energy storage plant and more competitive market trading as wind power ramps up and down on the grid. This paper presents an in-depth review of the current methods and advances in wind power forecasting and prediction. Firstly, numerical wind prediction methods from global to local scales, ensemble forecasting, upscaling and downscaling processes are discussed. Next the statistical and machine learning approach methods are detailed. Then the techniques used for benchmarking and uncertainty analysis of forecasts are overviewed, and the performance of various approaches over different forecast time horizons is examined. Finally, current research activities, challenges and potential future developments are appraised.