3 resultados para Small Area Estimation
em CORA - Cork Open Research Archive - University College Cork - Ireland
Inclusive education policy, the general allocation model and dilemmas of practice in primary schools
Resumo:
Background: Inclusive education is central to contemporary discourse internationally reflecting societies’ wider commitment to social inclusion. Education has witnessed transforming approaches that have created differing distributions of power, resource allocation and accountability. Multiple actors are being forced to consider changes to how key services and supports are organised. This research constitutes a case study situated within this broader social service dilemma of how to distribute finite resources equitably to meet individual need, while advancing inclusion. It focuses on the national directive with regard to inclusive educational practice for primary schools, Department of Education and Science Special Education Circular 02/05, which introduced the General Allocation Model (GAM) within the legislative context of the Education of Persons with Special Educational Needs (EPSEN) Act (Government of Ireland, 2004). This research could help to inform policy with ‘facts about what is happening on the ground’ (Quinn, 2013). Research Aims: The research set out to unearth the assumptions and definitions embedded within the policy document, to analyse how those who are at the coalface of policy, and who interface with multiple interests in primary schools, understand the GAM and respond to it, and to investigate its effects on students and their education. It examines student outcomes in the primary schools where the GAM was investigated. Methods and Sample The post-structural study acknowledges the importance of policy analysis which explicitly links the ‘bigger worlds’ of global and national policy contexts to the ‘smaller worlds’ of policies and practices within schools and classrooms. This study insists upon taking the detail seriously (Ozga, 1990). A mixed methods approach to data collection and analysis is applied. In order to secure the perspectives of key stakeholders, semi-structured interviews were conducted with primary school principals, class teachers and learning support/resource teachers (n=14) in three distinct mainstream, non-DEIS schools. Data from the schools and their environs provided a profile of students. The researcher then used the Pobal Maps Facility (available at www.pobal.ie) to identify the Small Area (SA) in which each student resides, and to assign values to each address based on the Pobal HP Deprivation Index (Haase and Pratschke, 2012). Analysis of the datasets, guided by the conceptual framework of the policy cycle (Ball, 1994), revealed a number of significant themes. Results: Data illustrate that the main model to support student need is withdrawal from the classroom under policy that espouses inclusion. Quantitative data, in particular, highlighted an association between segregated practice and lower socioeconomic status (LSES) backgrounds of students. Up to 83% of the students in special education programmes are from lower socio-economic status (LSES) backgrounds. In some schools 94% of students from LSES backgrounds are withdrawn from classrooms daily for special education. While the internal processes of schooling are not solely to blame for class inequalities, this study reveals the power of professionals to order children in school, which has implications for segregated special education practice. Such agency on the part of key actors in the context of practice relates to ‘local constructions of dis/ability’, which is influenced by teacher habitus (Bourdieu, 1984). The researcher contends that inclusive education has not resulted in positive outcomes for students from LSES backgrounds because it is built on faulty assumptions that focus on a psycho-medical perspective of dis/ability, that is, placement decisions do not consider the intersectionality of dis/ability with class or culture. This study argues that the student need for support is better understood as ‘home/school discontinuity’ not ‘disability’. Moreover, the study unearths the power of some parents to use social and cultural capital to ensure eligibility to enhanced resources. Therefore, a hierarchical system has developed in mainstream schools as a result of funding models to support need in inclusive settings. Furthermore, all schools in the study are ‘ordinary’ schools yet participants acknowledged that some schools are more ‘advantaged’, which may suggest that ‘ordinary’ schools serve to ‘bury class’ (Reay, 2010) as a key marker in allocating resources. The research suggests that general allocation models of funding to meet the needs of students demands a systematic approach grounded in reallocating funds from where they have less benefit to where they have more. The calculation of the composite Haase Value in respect of the student cohort in receipt of special education support adopted for this study could be usefully applied at a national level to ensure that the greatest level of support is targeted at greatest need. Conclusion: In summary, the study reveals that existing structures constrain and enable agents, whose interactions produce intended and unintended consequences. The study suggests that policy should be viewed as a continuous and evolving cycle (Ball, 1994) where actors in each of the social contexts have a shared responsibility in the evolution of education that is equitable, excellent and inclusive.
Resumo:
The development of ultra high speed (~20 Gsamples/s) analogue to digital converters (ADCs), and the delayed deployment of 40 Gbit/s transmission due to the economic downturn, has stimulated the investigation of digital signal processing (DSP) techniques for compensation of optical transmission impairments. In the future, DSP will offer an entire suite of tools to compensate for optical impairments and facilitate the use of advanced modulation formats. Chromatic dispersion is a very significant impairment for high speed optical transmission. This thesis investigates a novel electronic method of dispersion compensation which allows for cost-effective accurate detection of the amplitude and phase of the optical field into the radio frequency domain. The first electronic dispersion compensation (EDC) schemes accessed only the amplitude information using square law detection and achieved an increase in transmission distances. This thesis presents a method by using a frequency sensitive filter to estimate the phase of the received optical field and, in conjunction with the amplitude information, the entire field can be digitised using ADCs. This allows DSP technologies to take the next step in optical communications without requiring complex coherent detection. This is of particular of interest in metropolitan area networks. The full-field receiver investigated requires only an additional asymmetrical Mach-Zehnder interferometer and balanced photodiode to achieve a 50% increase in EDC reach compared to amplitude only detection.
Resumo:
Understanding the role of marine mammals in specific ecosystems and their interactions with fisheries involves, inter alia, an understanding of their diet and dietary requirements. In this thesis, the foraging ecology of seven marine mammal species that regularly occur in Irish waters was investigated by reconstructing diet using hard parts from digestive tracts and scats. Of the species examined, two (striped and Atlantic white-sided dolphin) can be considered offshore species or species inhabiting neritic waters, while five others usually inhabit more coastal areas (white-beaked dolphin, harbour porpoise, harbour seal and grey seal); the last species studied was the bottlenose dolphin whose population structure is more complex, with coastal and offshore populations. A total of 13,028 prey items from at least 81 different species (62 fish species, 14 cephalopods, four crustaceans, and a tunicate) were identified. 28% of the fish species were identified using bones other than otoliths, highlighting the importance of using all identifiable structures to reconstruct diet. Individually, each species of marine mammal presented a high diversity of prey taxa, but the locally abundant Trisopterus spp. were found to be the most important prey item for all species, indicating that Trisopterus spp. is probably a key species in understanding the role of these predators in Irish waters. In the coastal marine mammals, other Gadiformes species (haddock, pollack, saithe, whiting) also contributed substantially to the diet; in contrast, in pelagic or less coastal marine mammals, prey was largely comprised of planktivorous fish, such as Atlantic mackerel, horse mackerel, blue whiting, and mesopelagic prey. Striped dolphins and Atlantic white-sided dolphins are offshore small cetaceans foraging in neritic waters. Differences between the diet of striped dolphins collected in drift nets targeting tuna and stranded on Irish coasts showed a complex foraging behaviour; the diet information shows that although this dolphin forages mainly in oceanic waters it may occasionally forage on the continental shelf, feeding on available prey. The Atlantic white-sided dolphin diet showed that this species prefers to feed over the continental edge, where planktivorous fish are abundant. Some resource partitioning was found in bottlenose dolphins in Irish waters consistent with previous genetic and stable isotope analysis studies. Bottlenose dolphins in Irish waters appears to be generalist feeders consuming more than 30 prey species, however most of the diet comprised a few locally abundant species, especially gadoid fish including haddock/pollack/saithe group and Trisopterus spp., but the contribution of Atlantic hake, conger eels and the pelagic planktivorous horse mackerel were also important. Stomach content information suggests that three different feeding behaviours might occur in bottlenose dolphin populations in Irish waters; firstly a coastal behaviour, with animals feeding on prey that mainly inhabit areas close to the coast; secondly an offshore behaviour where dolphins feed on offshore species such as squid or mesopelagic fish; and a third more complex behaviour that involves movements over the continental shelf and close to the shelf edge. The other three coastal marine mammal species (harbour porpoise, harbour seal and grey seal) were found to be feeding on similar prey and competition for food resources among these sympatric species might occur. Both species of seals were found to have a high overlap (more than 80%) in their diet composition, but while grey seals feed on large fish (>110mm), harbour seals feed mostly on smaller fish (<110mm), suggesting some spatial segregation in foraging. Harbour porpoises and grey seals are potentially competing for the same food resource but some differences in prey species were found and some habitat partitioning might occur. Direct interaction (by catch) between dolphins and fisheries was detected in all species. Most of the prey found in the stomach contents from both stranded and by catch dolphins were smaller sizes than those targeted by commercial fisheries. In fact, the total annual food consumption of the species studied was found to be very small (225,160 tonnes) in comparison to fishery landings for the same area (~2 million tonnes). However, marine mammal species might be indirectly interacting with fisheries, removing forage fish. Incorporating the dietary information obtained from the four coastal species, an ECOPATH food web model was established for the Irish Sea, based on data from 2004. Five trophic levels were found, with bottlenose dolphins and grey and harbour seals occurring at the highest trophic level. A comparison with a previous model based on 1973 data suggests that while the overall Irish Sea ecosystem appears to be “maturing”, some indices indicate that the 2004 fishery was less efficient and was targeting fish at higher trophic levels than in 1973, which is reflected in the mean trophic level of the catch. Depletion or substantial decrease of some of the Irish Sea fish stocks has resulted in a significant decline in landings in this area. The integration of diet information in mass-balance models to construct ecosystem food-webs will help to understand the trophic role of these apex predators within the ecosystem.