16 resultados para Semiconductor wafers
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
We describe a 42.6 Gbit/s all-optical pattern recognition system which uses semiconductor optical amplifiers (SOAs). A circuit with three SOA-based logic gates is used to identify the presence of specific port numbers in an optical packet header.
Resumo:
Semiconductor nanowires are pseudo 1-D structures where the magnitude of the semiconducting material is confined to a length of less than 100 nm in two dimensions. Semiconductor nanowires have a vast range of potential applications, including electronic (logic devices, diodes), photonic (laser, photodetector), biological (sensors, drug delivery), energy (batteries, solar cells, thermoelectric generators), and magnetic (spintronic, memory) devices. Semiconductor nanowires can be fabricated by a range of methods which can be categorised into one of two paradigms, bottom-up or top-down. Bottom-up processes can be defined as those where structures are assembled from their sub-components in an additive fashion. Top-down fabrication strategies use sculpting or etching to carve structures from a larger piece of material in a subtractive fashion. This seminar will detail a number of novel routes to fabricate semiconductor nanowires by both bottom-up and top-down paradigms. Firstly, a novel bottom-up route to fabricate Ge nanowires with controlled diameter distributions in the sub-20 nm regime will be described. This route details nanowire synthesis and diameter control in the absence of a foreign seed metal catalyst. Additionally a top-down route to nanowire array fabrication will be detailed outlining the importance of surface chemistry in high-resolution electron beam lithography (EBL) using hydrogen silsesquioxane (HSQ) on Ge and Bi2Se3 surfaces. Finally, a process will be described for the directed self-assembly of a diblock copolymer (PS-b-PDMS) using an EBL defined template. This section will also detail a route toward selective template sidewall wetting of either block in the PS-b-PDMS system, through tailored functionalisation of the template and substrate surfaces.
Resumo:
Technology boosters, such as strain, HKMG and FinFET, have been introduced into semiconductor industry to extend Moore’s law beyond 130 nm technology nodes. New device structures and channel materials are highly demanded to keep performance enhancement when the device scales beyond 22 nm. In this work, the properties and feasibility of the proposed Junctionless transistor (JNT) have been evaluated for both Silicon and Germanium channels. The performance of Silicon JNTs with 22 nm gate length have been characterized at elevated temperature and stressed conditions. Furthermore, steep Subthreshold Slopes (SS) in JNT and IM devices are compared. It is observed that the floating body in JNT is relatively dynamic comparing with that in IM devices and proper design of the device structure may further reduce the VD for a sub- 60 mV/dec subthreshold slope. Diode configuration of the JNT has also been evaluated, which demonstrates the first diode without junctions. In order to extend JNT structure into the high mobility material Germanium (Ge), a full process has been develop for Ge JNT. Germanium-on-Insulator (GeOI) wafers were fabricated using Smart-Cut with low temperature direct wafer bonding method. Regarding the lithography and pattern transfer, a top-down process of sub-50-nm width Ge nanowires is developed in this chapter and Ge nanowires with 35 nm width and 50 nm depth are obtained. The oxidation behaviour of Ge by RTO has been investigated and high-k passivation scheme using thermally grown GeO2 has been developed. With all developed modules, JNT with Ge channels have been fabricated by the CMOScompatible top-down process. The transistors exhibit the lowest subthreshold slope to date for Ge JNT. The devices with a gate length of 3 μm exhibit a SS of 216 mV/dec with an ION/IOFF current ratio of 1.2×103 at VD = -1 V and DIBL of 87 mV/V.
Resumo:
Silicon (Si) is the base material for electronic technologies and is emerging as a very attractive platform for photonic integrated circuits (PICs). PICs allow optical systems to be made more compact with higher performance than discrete optical components. Applications for PICs are in the area of fibre-optic communication, biomedical devices, photovoltaics and imaging. Germanium (Ge), due to its suitable bandgap for telecommunications and its compatibility with Si technology is preferred over III-V compounds as an integrated on-chip detector at near infrared wavelengths. There are two main approaches for Ge/Si integration: through epitaxial growth and through direct wafer bonding. The lattice mismatch of ~4.2% between Ge and Si is the main problem of the former technique which leads to a high density of dislocations while the bond strength and conductivity of the interface are the main challenges of the latter. Both result in trap states which are expected to play a critical role. Understanding the physics of the interface is a key contribution of this thesis. This thesis investigates Ge/Si diodes using these two methods. The effects of interface traps on the static and dynamic performance of Ge/Si avalanche photodetectors have been modelled for the first time. The thesis outlines the original process development and characterization of mesa diodes which were fabricated by transferring a ~700 nm thick layer of p-type Ge onto n-type Si using direct wafer bonding and layer exfoliation. The effects of low temperature annealing on the device performance and on the conductivity of the interface have been investigated. It is shown that the diode ideality factor and the series resistance of the device are reduced after annealing. The carrier transport mechanism is shown to be dominated by generation–recombination before annealing and by direct tunnelling in forward bias and band-to-band tunnelling in reverse bias after annealing. The thesis presents a novel technique to realise photodetectors where one of the substrates is thinned by chemical mechanical polishing (CMP) after bonding the Si-Ge wafers. Based on this technique, Ge/Si detectors with remarkably high responsivities, in excess of 3.5 A/W at 1.55 μm at −2 V, under surface normal illumination have been measured. By performing electrical and optical measurements at various temperatures, the carrier transport through the hetero-interface is analysed by monitoring the Ge band bending from which a detailed band structure of the Ge/Si interface is proposed for the first time. The above unity responsivity of the detectors was explained by light induced potential barrier lowering at the interface. To our knowledge this is the first report of light-gated responsivity for vertically illuminated Ge/Si photodiodes. The wafer bonding approach followed by layer exfoliation or by CMP is a low temperature wafer scale process. In principle, the technique could be extended to other materials such as Ge on GaAs, or Ge on SOI. The unique results reported here are compatible with surface normal illumination and are capable of being integrated with CMOS electronics and readout units in the form of 2D arrays of detectors. One potential future application is a low-cost Si process-compatible near infrared camera.
Resumo:
Mode-locked semiconductor lasers are compact pulsed sources with ultra-narrow pulse widths and high repetition-rates. In order to use these sources in real applications, their performance needs to be optimised in several aspects, usually by external control. We experimentally investigate the behaviour of recently-developed quantum-dash mode-locked lasers (QDMLLs) emitting at 1.55 μm under external optical injection. Single-section and two-section lasers with different repetition frequencies and active-region structures are studied. Particularly, we are interested in a regime which the laser remains mode-locked and the individual modes are simultaneously phase-locked to the external laser. Injection-locked self-mode-locked lasers demonstrate tunable microwave generation at first or second harmonic of the free-running repetition frequency with sub-MHz RF linewidth. For two-section mode-locked lasers, using dual-mode optical injection (injection of two coherent CW lines), narrowing the RF linewidth close to that of the electrical source, narrowing the optical linewidths and reduction in the time-bandwidth product is achieved. Under optimised bias conditions of the slave laser, a repetition frequency tuning ratio >2% is achieved, a record for a monolithic semiconductor mode-locked laser. In addition, we demonstrate a novel all-optical stabilisation technique for mode-locked semiconductor lasers by combination of CW optical injection and optical feedback to simultaneously improve the time-bandwidth product and timing-jitter of the laser. This scheme does not need an RF source and no optical to electrical conversion is required and thus is ideal for photonic integration. Finally, an application of injection-locked mode-locked lasers is introduced in a multichannel phase-sensitive amplifier (PSA). We show that with dual-mode injection-locking, simultaneous phase-synchronisation of two channels to local pump sources is realised through one injection-locking stage. An experimental proof of concept is demonstrated for two 10 Gbps phase-encoded (DPSK) channels showing more than 7 dB phase-sensitive gain and less than 1 dB penalty of the receiver sensitivity.
Resumo:
One-dimensional semiconductor nanowires are considered to be promising materials for future nanoelectronic applications. However, before these nanowires can be integrated into such applications, a thorough understanding of their growth behaviour is necessary. In particular, methods that allow the control over nanowire growth are deemed especially important as it is these methods that will enable the control of nanowire dimensions such as length and diameter (high aspect ratios). The production of nanowires with high-aspect ratios is vital in order to take advantage of the unique properties experienced at the nanoscale, thus allowing us to maximise their use in devices. Additionally, the development of low-resistivity interconnects is desirable in order to connect such nanowires in multi-nanowire components. Consequently, this thesis aims to discuss the synthesis and characterisation of germanium (Ge) nanowires and platinum (Pt) interconnects. Particular emphasis is placed on manipulating the nanowire growth kinetics to produce high aspect ratio structures. The discussion of Pt interconnects focuses on the development of low-resistivity devices and the electrical and structural analysis of those devices. Chapter 1 reviews the most critical aspects of Ge nanowire growth which must be understood before they can be integrated into future nanodevices. These features include the synthetic methods employed to grow Ge nanowires, the kinetic and thermodynamic aspects of their growth and nanowire morphology control. Chapter 2 outlines the experimental methods used to synthesise and characterise Ge nanowires as well as the methods used to fabricate and analyse Pt interconnects. Chapter 3 discusses the control of Ge nanowire growth kinetics via the manipulation of the supersaturation of Ge in the Au/Ge binary alloy system. This is accomplished through the use of bi-layer films, which pre-form Au/Ge alloy catalysts before the introduction of the Ge precursor. The growth from these catalysts is then compared with Ge nanowire growth from standard elemental Au seeds. Nanowires grown from pre-formed Au/Ge alloy seeds demonstrate longer lengths and higher growth rates than those grown from standard Au seeds. In-situ TEM heating on the Au/Ge bi-layer films is used to support the growth characteristics observed. Chapter 4 extends the work of chapter 3 by utilising Au/Ag/Ge tri-layer films to enhance the growth rates and lengths of Ge nanowires. These nanowires are grown from Au/Ag/Ge ternary alloy catalysts. Once again, the supersaturation is influenced, only this time it is through the simultaneous manipulation of both the solute concentration and equilibrium concentration of Ge in the Au/Ag/Ge ternary alloy system. The introduction of Ag to the Au/Ge binary alloy lowers the equilibrium concentration, thus increasing the nanowire growth rate and length. Nanowires with uniform diameters were obtained via synthesis from AuxAg1-x alloy nanoparticles. Manifestation of the Gibbs-Thomson effect, resulting from the dependence of the mean nanowire length as a function of diameter, was observed for all of the nanowires grown from the AuxAg1-x nanoparticles. Finally, in-situ TEM heating was used to support the nanowire growth characteristics. Chapter 5 details the fabrication and characterisation of Pt interconnects deposited by electron beam induced deposition of two different precursors. The fabrication is conducted inside a dual beam FIB. The electrical and structural characteristics of interconnects deposited from a standard organometallic precursor and a novel carbon-free precursor are compared. The electrical performance of the carbon-free interconnects is shown to be superior to that of the organometallic devices and this is correlated to the structural composition of both interconnects via in-situ TEM heating and HAADF-STEM analysis. Annealing of the interconnects is carried out under two different atmospheres in order to reduce the electrical resistivity even further. Finally, chapter 6 presents some important conclusions and summarises each of the previous chapters.
Resumo:
Reflective modulators based on the combination of an electroabsorption modulator (EAM) and semiconductor optical amplifier (SOA) are attractive devices for applications in long reach carrier distributed passive optical networks (PONs) due to the gain provided by the SOA and the high speed and low chirp modulation of the EAM. Integrated R-EAM-SOAs have experimentally shown two unexpected and unintuitive characteristics which are not observed in a single pass transmission SOA: the clamping of the output power of the device around a maximum value and low patterning distortion despite the SOA being in a regime of gain saturation. In this thesis a detailed analysis is carried out using both experimental measurements and modelling in order to understand these phenomena. For the first time it is shown that both the internal loss between SOA and R-EAM and the SOA gain play an integral role in the behaviour of gain saturated R-EAM-SOAs. Internal loss and SOA gain are also optimised for use in a carrier distributed PONs in order to access both the positive effect of output power clamping, and hence upstream dynamic range reduction, combined with low patterning operation of the SOA Reflective concepts are also gaining interest for metro transport networks and short reach, high bit rate, inter-datacentre links. Moving the optical carrier generation away from the transmitter also has potential advantages for these applications as it avoids the need for cooled photonics being placed directly on hot router line-cards. A detailed analysis is carried out in this thesis on a novel colourless reflective duobinary modulator, which would enable wavelength flexibility in a power-efficient reflective metro node.
Resumo:
This thesis details an experimental and simulation investigation of some novel all-optical signal processing techniques for future optical communication networks. These all-optical techniques include modulation format conversion, phase discrimination and clock recovery. The methods detailed in this thesis use the nonlinearities associated with semiconductor optical amplifiers (SOA) to manipulate signals in the optical domain. Chapter 1 provides an introduction into the work detailed in this thesis, discusses the increased demand for capacity in today’s optical fibre networks and finally explains why all-optical signal processing may be of interest for future optical networks. Chapter 2 discusses the relevant background information required to fully understand the all-optical techniques demonstrated in this thesis. Chapter 3 details some pump-probe measurement techniques used to calculate the gain and phase recovery times of a long SOA. A remarkably fast gain recovery is observed and the wavelength dependent nature of this recovery is investigated. Chapter 4 discusses the experimental demonstration of an all-optical modulation conversion technique which can convert on-off- keyed data into either duobinary or alternative mark inversion. In Chapter 5 a novel phase sensitive frequency conversion scheme capable of extracting the two orthogonal components of a quadrature phase modulated signal into two separate frequencies is demonstrated. Chapter 6 investigates a novel all-optical clock recovery technique for phase modulated optical orthogonal frequency division multiplexing superchannels and finally Chapter 7 provides a brief conclusion.
Resumo:
The objective of this thesis is the exploration and characterization of novel Au nanorod-semiconductor nanowire hybrid nanostructures. I provide a comprehensive bottom-up approach in which, starting from the synthesis and theoretical investigation of the optical properties of Au nanorods, I design, nanofabricate and characterize Au nanorods-semiconductor nanowire hybrid nanodevices with novel optoelectronic capabilities compared to the non-hybrid counterpart. In this regards, I first discuss the seed-mediated protocols to synthesize Au nanorods with different sizes and the influence of nanorod geometries and non-homogeneous surrounding medium on the optical properties investigated by theoretical simulation. Novel methodologies for assembling Au nanorods on (i) a Si/SiO2 substrate with highly-ordered architecture and (ii) on semiconductor nanowires with spatial precision are developed and optimized. By exploiting these approaches, I demonstrate that Raman active modes of an individual ZnO nanowire can be detected in non-resonant conditions by exploring the longitudinal plasmonic resonance mediation of chemical-synthesized Au nanorods deposited on the nanowire surface otherwise not observable on bare ZnO nanowire. Finally, nanofabrication and detailed electrical characterization of ZnO nanowire field-effect transistor (FET) and optoelectronic properties of Au nanorods - ZnO nanowire FET tunable near-infrared photodetector are investigated. In particular we demonstrated orders of magnitude enhancement in the photocurrent intensity in the explored range of wavelengths and 40 times faster time response compared to the bare ZnO FET detector. The improved performance, attributed to the plasmonicmediated hot-electron generation and injection mechanism underlying the photoresponse is investigated both experimentally and theoretically. The miniaturized, tunable and integrated capabilities offered by metal nanorodssemicondictor nanowire device architectures presented in this thesis work could have an important impact in many application fields such as opto-electronic sensors, photodetectors and photovoltaic devices and open new avenues for designing of novel nanoscale optoelectronic devices.
Resumo:
Porous layers can be formed electrochemically on (100) oriented n-InP substrates in aqueous KOH. A nanoporous layer is obtained underneath a dense near-surface layer and the pores appear to propagate from holes through the near-surface layer. In the early stages of the anodization transmission electron microscopy (TEM) clearly shows individual porous domains that appear to have a square-based pyramidal shape. Each domain appears to develop from an individual surface pit which forms a channel through this near-surface layer. We suggest that the pyramidal structure arises as a result of preferential pore propagation along the <100> directions. AFM measurements show that the density of surface pits increases with time. Each of these pits acts as a source for a pyramidal porous domain. When the domains grow, the current density increases correspondingly. Eventually the domains meet, forming a continuous porous layer, the interface between the porous and bulk InP becomes relatively flat and its total effective surface area decreases resulting in a decrease in the current density. Current-time curves at constant potential exhibit a peak and porous layers are observed to form beneath the electrode surface. The density of pits formed on the surface increases with time and approaches a plateau value. Porous layers are also observed in highly doped InP but are not observed in wafers with doping densities below ~5 × 1017 cm-3. Numerical models of this process have been developed invoking a mechanism of directional selectivity of pore growth preferentially along the <100> lattice directions. Manipulation of the parameters controlling these curves shows that the fall-off in current is controlled by the rate of diffusion of electrolyte through the pore structure with the final decline in current being caused by the termination of growth at the pore tips through the formation of passivating films or some other irreversible modification of the pore tips.
Resumo:
Conductive AFM and in situ methods were used to determine contact resistance and resistivity of individual Sb2S3 nanowires. Nanowires were deposited on oxidized Si surface for in situ measurements and on Si surface with macroelectrodes for conductive AFM (C-AFM) measurements. Contact resistance was determined by measurement of I(V) characteristics at different distances from the nanowire contact with the macroelectrode and resistivity of nanowires was determined. Sb2S3 is a soft material with low adhesion force to the surface and therefore special precautions were taken during measurements.
Resumo:
Organic Functionalisation, Doping and Characterisation of Semiconductor Surfaces for Future CMOS Device Applications Semiconductor materials have long been the driving force for the advancement of technology since their inception in the mid-20th century. Traditionally, micro-electronic devices based upon these materials have scaled down in size and doubled in transistor density in accordance with the well-known Moore’s law, enabling consumer products with outstanding computational power at lower costs and with smaller footprints. According to the International Technology Roadmap for Semiconductors (ITRS), the scaling of metal-oxide-semiconductor field-effect transistors (MOSFETs) is proceeding at a rapid pace and will reach sub-10 nm dimensions in the coming years. This scaling presents many challenges, not only in terms of metrology but also in terms of the material preparation especially with respect to doping, leading to the moniker “More-than-Moore”. Current transistor technologies are based on the use of semiconductor junctions formed by the introduction of dopant atoms into the material using various methodologies and at device sizes below 10 nm, high concentration gradients become a necessity. Doping, the controlled and purposeful addition of impurities to a semiconductor, is one of the most important steps in the material preparation with uniform and confined doping to form ultra-shallow junctions at source and drain extension regions being one of the key enablers for the continued scaling of devices. Monolayer doping has shown promise to satisfy the need to conformally dope at such small feature sizes. Monolayer doping (MLD) has been shown to satisfy the requirements for extended defect-free, conformal and controllable doping on many materials ranging from the traditional silicon and germanium devices to emerging replacement materials such as III-V compounds This thesis aims to investigate the potential of monolayer doping to complement or replace conventional doping technologies currently in use in CMOS fabrication facilities across the world.
Resumo:
As a device, the laser is an elegant conglomerate of elementary physical theories and state-of-the-art techniques ranging from quantum mechanics, thermal and statistical physics, material growth and non-linear mathematics. The laser has been a commercial success in medicine and telecommunication while driving the development of highly optimised devices specifically designed for a plethora of uses. Due to their low-cost and large-scale predictability many aspects of modern life would not function without the lasers. However, the laser is also a window into a system that is strongly emulated by non-linear mathematical systems and are an exceptional apparatus in the development of non-linear dynamics and is often used in the teaching of non-trivial mathematics. While single-mode semiconductor lasers have been well studied, a unified comparison of single and two-mode lasers is still needed to extend the knowledge of semiconductor lasers, as well as testing the limits of current model. Secondly, this work aims to utilise the optically injected semiconductor laser as a tool so study non-linear phenomena in other fields of study, namely ’Rogue waves’ that have been previously witnessed in oceanography and are suspected as having non-linear origins. The first half of this thesis includes a reliable and fast technique to categorise the dynamical state of optically injected two mode and single mode lasers. Analysis of the experimentally obtained time-traces revealed regions of various dynamics and allowed the automatic identification of their respective stability. The impact of this method is also extended to the detection regions containing bi-stabilities. The second half of the thesis presents an investigation into the origins of Rogue Waves in single mode lasers. After confirming their existence in single mode lasers, their distribution in time and sudden appearance in the time-series is studied to justify their name. An examination is also performed into the existence of paths that make Rogue Waves possible and the impact of noise on their distribution is also studied.
Resumo:
Semiconductor lasers have the potential to address a number of critical applications in advanced telecommunications and signal processing. These include applications that require pulsed output that can be obtained from self-pulsing and mode-locked states of two-section devices with saturable absorption. Many modern applications place stringent performance requirements on the laser source, and a thorough understanding of the physical mechanisms underlying these pulsed modes of operation is therefore highly desirable. In this thesis, we present experimental measurements and numerical simulations of a variety of self-pulsation phenomena in two-section semiconductor lasers with saturable absorption. Our theoretical and numerical results will be based on rate equations for the field intensities and the carrier densities in the two sections of the device, and we establish typical parameter ranges and assess the level of agreement with experiment that can be expected from our models. For each of the physical examples that we consider, our model parameters are consistent with the physical net gain and absorption of the studied devices. Following our introductory chapter, the first system that we consider is a two-section Fabry-Pérot laser. This example serves to introduce our method for obtaining model parameters from the measured material dispersion, and it also allows us to present a detailed discussion of the bifurcation structure that governs the appearance of selfpulsations in two-section devices. In the following two chapters, we present two distinct examples of experimental measurements from dual-mode two-section devices. In each case we have found that single mode self-pulsations evolve into complex coupled dualmode states following a characteristic series of bifurcations. We present optical and mode resolved power spectra as well as a series of characteristic intensity time traces illustrating this progression for each example. Using the results from our study of a twosection Fabry-Pérot device as a guide, we find physically appropriate model parameters that provide qualitative agreement with our experimental results. We highlight the role played by material dispersion and the underlying single mode self-pulsing orbits in determining the observed dynamics, and we use numerical continuation methods to provide a global picture of the governing bifurcation structure. In our concluding chapter we summarise our work, and we discuss how the presented results can inform the development of optimised mode-locked lasers for performance applications in integrated optics.
Resumo:
Highly doped polar semiconductors are essential components of today’s semiconductor industry. Most strikingly, transistors in modern electronic devices are polar semiconductor heterostructures. It is important to thoroughly understand carrier transport in such structures. In doped polar semiconductors, collective excitations of the carriers (plasmons) and the atoms (polar phonons) couple. These coupled collective excitations affect the electrical conductivity, here quantified through the carrier mobility. In scattering events, the carriers and the coupled collective modes transfer momentum between each other. Carrier momentum transferred to polar phonons can be lost to other phonons through anharmonic decay, resulting in a finite carrier mobility. The plasmons do not have a decay mechanism which transfers carrier momentum irretrievably. Hence, carrier-plasmon scattering results in infinite carrier mobility. Momentum relaxation due to either carrier–plasmon scattering or carrier–polar-phonon scattering alone are well understood. However, only this thesis manages to treat momentum relaxation due to both scattering mechanisms on an equal footing, enabling us to properly calculate the mobility limited by carrier–coupled plasmon–polar phonon scattering. We achieved this by solving the coupled Boltzmann equations for the carriers and the collective excitations, focusing on the “drag” term and on the anharmonic decay process of the collective modes. Our approach uses dielectric functions to describe both the carrier-collective mode scattering and the decay of the collective modes. We applied our method to bulk polar semiconductors and heterostructures where various polar dielectrics surround a semiconducting monolayer of MoS2, where taking plasmons into account can increase the mobility by up to a factor 15 for certain parameters. This screening effect is up to 85% higher than if calculated with previous methods. To conclude, our approach provides insight into the momentum relaxation mechanism for carrier–coupled collective mode scattering, and better tools for calculating the screened polar phonon and interface polar phonon limited mobility.