4 resultados para SYSTEMATIC SYNTHESIS
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This paper introduces a screw theory based method termed constraint and position identification (CPI) approach to synthesize decoupled spatial translational compliant parallel manipulators (XYZ CPMs) with consideration of actuation isolation. The proposed approach is based on a systematic arrangement of rigid stages and compliant modules in a three-legged XYZ CPM system using the constraint spaces and the position spaces of the compliant modules. The constraint spaces and the position spaces are firstly derived based on the screw theory instead of using the rigid-body mechanism design experience. Additionally, the constraint spaces are classified into different constraint combinations, with typical position spaces depicted via geometric entities. Furthermore, the systematic synthesis process based on the constraint combinations and the geometric entities is demonstrated via several examples. Finally, several novel decoupled XYZ CPMs with monolithic configurations are created and verified by finite elements analysis. The present CPI approach enables experts and beginners to synthesize a variety of decoupled XYZ CPMs with consideration of actuation isolation by selecting an appropriate constraint and an optimal position for each of the compliant modules according to a specific application.
Resumo:
With the proliferation of mobile wireless communication and embedded systems, the energy efficiency becomes a major design constraint. The dissipated energy is often referred as the product of power dissipation and the input-output delay. Most of electronic design automation techniques focus on optimising only one of these parameters either power or delay. Industry standard design flows integrate systematic methods of optimising either area or timing while for power consumption optimisation one often employs heuristics which are characteristic to a specific design. In this work we answer three questions in our quest to provide a systematic approach to joint power and delay Optimisation. The first question of our research is: How to build a design flow which incorporates academic and industry standard design flows for power optimisation? To address this question, we use a reference design flow provided by Synopsys and integrate in this flow academic tools and methodologies. The proposed design flow is used as a platform for analysing some novel algorithms and methodologies for optimisation in the context of digital circuits. The second question we answer is: Is possible to apply a systematic approach for power optimisation in the context of combinational digital circuits? The starting point is a selection of a suitable data structure which can easily incorporate information about delay, power, area and which then allows optimisation algorithms to be applied. In particular we address the implications of a systematic power optimisation methodologies and the potential degradation of other (often conflicting) parameters such as area or the delay of implementation. Finally, the third question which this thesis attempts to answer is: Is there a systematic approach for multi-objective optimisation of delay and power? A delay-driven power and power-driven delay optimisation is proposed in order to have balanced delay and power values. This implies that each power optimisation step is not only constrained by the decrease in power but also the increase in delay. Similarly, each delay optimisation step is not only governed with the decrease in delay but also the increase in power. The goal is to obtain multi-objective optimisation of digital circuits where the two conflicting objectives are power and delay. The logic synthesis and optimisation methodology is based on AND-Inverter Graphs (AIGs) which represent the functionality of the circuit. The switching activities and arrival times of circuit nodes are annotated onto an AND-Inverter Graph under the zero and a non-zero-delay model. We introduce then several reordering rules which are applied on the AIG nodes to minimise switching power or longest path delay of the circuit at the pre-technology mapping level. The academic Electronic Design Automation (EDA) tool ABC is used for the manipulation of AND-Inverter Graphs. We have implemented various combinatorial optimisation algorithms often used in Electronic Design Automation such as Simulated Annealing and Uniform Cost Search Algorithm. Simulated Annealing (SMA) is a probabilistic meta heuristic for the global optimization problem of locating a good approximation to the global optimum of a given function in a large search space. We used SMA to probabilistically decide between moving from one optimised solution to another such that the dynamic power is optimised under given delay constraints and the delay is optimised under given power constraints. A good approximation to the global optimum solution of energy constraint is obtained. Uniform Cost Search (UCS) is a tree search algorithm used for traversing or searching a weighted tree, tree structure, or graph. We have used Uniform Cost Search Algorithm to search within the AIG network, a specific AIG node order for the reordering rules application. After the reordering rules application, the AIG network is mapped to an AIG netlist using specific library cells. Our approach combines network re-structuring, AIG nodes reordering, dynamic power and longest path delay estimation and optimisation and finally technology mapping to an AIG netlist. A set of MCNC Benchmark circuits and large combinational circuits up to 100,000 gates have been used to validate our methodology. Comparisons for power and delay optimisation are made with the best synthesis scripts used in ABC. Reduction of 23% in power and 15% in delay with minimal overhead is achieved, compared to the best known ABC results. Also, our approach is also implemented on a number of processors with combinational and sequential components and significant savings are achieved.
Resumo:
Objectives: The objective of this systematic review was to synthesize the available qualitative evidence on the knowledge, attitudes and beliefs of adult patients, healthcare professionals and carers about oral dosage form modification. Design: A systematic review and synthesis of qualitative studies was undertaken, utilising the thematic synthesis approach. Data sources: The following databases were searched from inception to September 2015: PubMed, Medline (EBSCO), EMBASE, CINAHL, PsycINFO, Web of Science, ProQuest Databases, Scopus, Turning Research Into Practice (TRIP), Cochrane Central Register of Controlled Trials (CENTRAL) and the Cochrane Database of Systematic Reviews (CDSR). Citation tracking and searching the references lists of included studies was also undertaken. Grey literature was searched using the OpenGrey database, internet searching and personal knowledge. An updated search was undertaken in June 2016. Review methods: Studies meeting the following criteria were eligible for inclusion; (i) used qualitative data collection and analysis methods; (ii) full-text was available in English; (iii) included adult patients who require oral dosage forms to be modified to meet their needs or; (iv) carers or healthcare professionals of patients who require oral dosage forms to be modified. Two reviewers independently appraised the quality of the included studies using the Critical Appraisal Skills Programme Checklist. A thematic synthesis was conducted and analytical themes were generated. Results: Of 5455 records screened, seven studies were eligible for inclusion; three involved healthcare professionals and the remaining four studies involved patients. Four analytical themes emerged from the thematic synthesis: (i) patient-centred individuality and variability; (ii) communication; (iii) knowledge and uncertainty and; (iv) complexity. The variability of individual patient’s requirements, poor communication practices and lack of knowledge about oral dosage form modification, when combined with the complex and multi-faceted healthcare environment complicate decision making regarding oral dosage form modification and administration. Conclusions: This systematic review has highlighted the key factors influencing the knowledge, attitudes and beliefs of patients and healthcare professionals about oral dosage form modifications. The findings suggest that in order to optimise oral medicine modification practices the needs of individual patients should be routinely and systematically assessed and decision-making should be supported by evidence based recommendations with multidisciplinary input. Further research is needed to optimise oral dosage form modification practices and the factors identified in this review should be considered in the development of future interventions.
Resumo:
The success of childhood weight management programmes relies on family engagement. While attendance offers many benefits including the support to make positive lifestyle changes, the majority of families referred to treatment decline. Moreover, for those who do attend, benefits are often compromised by high programme attrition. This systematic review investigated factors influencing attendance at community-based lifestyle programmes among families of over-weight or obese children. A narrative synthesis approach was used to allow for the inclusion of quantitative, qualitative and mixed-method study designs. Thirteen studies met the inclusion criteria. Results suggest that parents provided the impetus for programme initiation, and this was driven largely by a concern for their child's psychological health and wellbeing. More often than not, children went along without any real reason or interest in attending. Over the course of the programme, however, children's positive social experiences such as having fun and making friends fostered the desire to continue. The stigma surrounding excess weight and the denial of the issue amongst some parents presented barriers to enrolment and warrant further study. This study provides practical recommendations to guide future policy makers, programme delivery teams and researchers in developing strategies to boost recruitment and minimise attrition.