8 resultados para Quantum confinement
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
By using Si(100) with different dopant type (n++-type (As) or p-type (B)), it is shown how metal-assisted chemically (MAC) etched silicon nanowires (Si NWs) can form with rough outer surfaces around a solid NW core for p-type NWs, and a unique, defined mesoporous structure for highly doped n-type NWs. High resolution electron microscopy techniques were used to define the characteristic roughening and mesoporous structure within the NWs and how such structures can form due to a judicious choice of carrier concentration and dopant type. Control of roughness and internal mesoporosity is demonstrated during the formation of Si NWs from highly doped n-type Si(100) during electroless etching through a systematic investigation of etching parameters (etching time, AgNO3 concentration, %HF and temperature). Raman scattering measurements of the transverse optical phonon confirm quantum size effects and phonon scattering in mesoporous wires associated with the etching condition, including quantum confinement effects for the nanocrystallites of Si comprising the internal structure of the mesoporous NWs. Laser power heating of NWs confirms phonon confinement and scattering from internal mesoporosity causing reduced thermal conductivity. The Li+ insertion and extraction characteristics at n-type and p-type Si(100) electrodes with different carrier density and doping type are investigated by cyclic voltammetry and constant current measurements. The insertion and extraction potentials are demonstrated to vary with cycling and the occurrence of an activation effect is shown in n-type electrodes where the charge capacity and voltammetric currents are found to be much higher than p-type electrodes. X-ray photo-electron spectroscopy (XPS) and Raman scattering demonstrate that highly doped n-type Si(100) retains Li as a silicide and converts to an amorphous phase as a two-step phase conversion process. The findings show the succinct dependence of Li insertion and extraction processes for uniformly doped Si(100) single crystals and how the doping type and its effect on the semiconductor-solution interface dominate Li insertion and extraction, composition, crystallinity changes and charge capacity. The effect of dopant, doping density and porosity of MAC etched Si NWs are investigated. The CV response is shown to change in area (current density) with increasing NW length and in profile shape with a changing porosity of the Si NWs. The CV response also changes with scan rate indicative of a transition from intercalation or alloying reactions, to pseudocapactive charge storage at higher scan rates and for p-type NWs. SEM and TEM show a change in structure of the NWs after Li insertion and extraction due to expansion and contraction of the Si NWs. Galvanostatic measurements show the cycling behavior and the Coulombic efficiency of the Si NWs in comparison to their bulk counterparts.
Resumo:
In the last two decades, semiconductor nanocrystals have been the focus of intense research due to their size dependant optical and electrical properties. Much is now known about how to control their size, shape, composition and surface chemistry, allowing fine control of their photophysical and electronic properties. However, genuine concerns have been raised regarding the heavy metal content of these materials, which is toxic even at relatively low concentrations and may limit their wide scale use. These concerns have driven the development of heavy metal free alternatives. In recent years, germanium nanocrystals (Ge NCs) have emerged as environmentally friendlier alternatives to II-VI and IV-VI semiconductor materials as they are nontoxic, biocompatible and electrochemically stable. This thesis reports the synthesis and characterisation of Ge NCs and their application as fluorescence probes for the detection of metal ions. A room-temperature method for the synthesis of size monodisperse Ge NCs within inverse micelles is reported, with well-defined core diameters that may be tuned from 3.5 to 4.5 nm. The Ge NCs are chemically passivated with amine ligands, minimising surface oxidation while rendering the NCs dispersible in a range of polar solvents. Regulation of the Ge NCs size is achieved by variation of the ammonium salts used to form the micelles. A maximum quantum yield of 20% is shown for the nanocrystals, and a transition from primarily blue to green emission is observed as the NC diameter increases from 3.5 to 4.5 nm. A polydisperse sample with a mixed emission profile is prepared and separated by centrifugation into individual sized NCs which each showed blue and green emission only, with total suppression of other emission colours. A new, efficient one step synthesis of Ge NCs with in situ passivation and straightforward purification steps is also reported. Ge NCs are formed by co-reduction of a mixture of GeCl4 and n-butyltrichlorogermane; the latter is used both as a capping ligand and a germanium source. The surface-bound layer of butyl chains both chemically passivates and stabilises the Ge NCs. Optical spectroscopy confirmed that these NCs are in the strong quantum confinement regime, with significant involvement of surface species in exciton recombination processes. The PL QY is determined to be 37 %, one of the highest values reported for organically terminated Ge NCs. A synthetic method is developed to produce size monodisperse Ge NCs with modified surface chemistries bearing carboxylic acid, acetate, amine and epoxy functional groups. The effect of these different surface terminations on the optical properties of the NCs is also studied. Comparison of the emission properties of these Ge NCs showed that the wavelength position of the PL maxima could be moved from the UV to the blue/green by choice of the appropriate surface group. We also report the application of water-soluble Ge NCs as a fluorescent sensing platform for the fast, highly selective and sensitive detection of Fe3+ ions. The luminescence quenching mechanism is confirmed by lifetime and absorbance spectroscopies, while the applicability of this assay for detection of Fe3+ in real water samples is investigated and found to satisfy the US Environmental Protection Agency requirements for Fe3+ levels in drinkable water supplies.
Resumo:
First-principles electronic structure methods are used to predict the rate of n-type carrier scattering due to phonons in highly-strained Ge. We show that strains achievable in nanoscale structures, where Ge becomes a direct bandgap semiconductor, cause the phonon-limited mobility to be enhanced by hundreds of times that of unstrained Ge, and over a thousand times that of Si. This makes highly tensile strained Ge a most promising material for the construction of channels in CMOS devices, as well as for Si-based photonic applications. Biaxial (001) strain achieves mobility enhancements of 100 to 1000 with strains over 2%. Low temperature mobility can be increased by even larger factors. Second order terms in the deformation potential of the Gamma valley are found to be important in this mobility enhancement. Although they are modified by shifts in the conduction band valleys, which are caused by carrier quantum confinement, these mobility enhancements persist in strained nanostructures down to sizes of 20 nm.
Resumo:
Germanium (Ge) nanowires are of current research interest for high speed nanoelectronic devices due to the lower band gap and high carrier mobility compatible with high K-dielectrics and larger excitonic Bohr radius ensuing a more pronounced quantum confinement effect [1-6]. A general way for the growth of Ge nanowires is to use liquid or a solid growth promoters in a bottom-up approach which allow control of the aspect ratio, diameter, and structure of 1D crystals via external parameters, such as precursor feedstock, temperature, operating pressure, precursor flow rate etc [3, 7-11]. The Solid-phase seeding is preferred for more control processing of the nanomaterials and potential suppression of the unintentional incorporation of high dopant concentrations in semiconductor nanowires and unrequired compositional tailing of the seed-nanowire interface [2, 5, 9, 12]. There are therefore distinct features of the solid phase seeding mechanism that potentially offer opportunities for the controlled processing of nanomaterials with new physical properties. A superior control over the growth kinetics of nanowires could be achieved by controlling the inherent growth constraints instead of external parameters which always account for instrumental inaccuracy. The high dopant concentrations in semiconductor nanowires can result from unintentional incorporation of atoms from the metal seed material, as described for the Al catalyzed VLS growth of Si nanowires [13] which can in turn be depressed by solid-phase seeding. In addition, the creation of very sharp interfaces between group IV semiconductor segments has been achieved by solid seeds [14], whereas the traditionally used liquid Au particles often leads to compositional tailing of the interface [15] . Korgel et al. also described the superior size retention of metal seeds in a SFSS nanowire growth process, when compared to a SFLS process using Au colloids [12]. Here in this work we have used silver and alloy seed particle with different compositions to manipulate the growth of nanowires in sub-eutectic regime. The solid seeding approach also gives an opportunity to influence the crystallinity of the nanowires independent of the substrate. Taking advantage of the readily formation of stacking faults in metal nanoparticles, lamellar twins in nanowires could be formed.
Resumo:
Quantum dashes are elongated quantum dots. Polarized edge-photovoltage and spontaneous emission spectroscopy are used to study the anisotropy of optical properties in 1.5μm InGaAsP and AlGaInAs-based quantum dash lasers. Strain, which causes TM-polarized transitions to be suppressed at the band edge, coupled with carrier confinement and dash shape leads to an enhancement of the optical properties for light polarized along the dash long axis, in excellent agreement with theoretical results. An analysis of the integrated facet and spontaneous emission rate with total current and temperature reveals that, in both undoped and p-doped InGaAsP-based quantum dash lasers at room temperature, the threshold current and its temperature dependence remain dominated by Auger recombination. We also identify two processes which can limit the output power and propose that the effects of the dopant in p-doped InGaAsP-based lasers dominate at low temperature but decrease with increasing temperature. A high threshold current density in undoped AlGaInAs-based quantum dash laser samples studied, which degrade rapidly at low temperature, is not due to intrinsic carrier recombination processes. 1.3μm GaAs-based quantum dots lasers have been widely studied, but there remains issues as to the nature of the electronic structure. Polarized edge-photovoltage spectroscopy is used to investigate the energy distribution and nature of the energy states in InAs/GaAs quantum dot material. A non-negligible TM-polarized transition, which is often neglected in calculations and analyses, is measured close to the main TE-polarized ground state transition. Theory is in very good agreement with the experimental results and indicates that the measured low-energy TM-polarized transition is due to the strong spatial overlap between the ground state electron and the light-hole component of a low-lying excited hole state. Further calculations suggest that the TM-polarized transition reduces at the band edge as the quantum dot aspect ratio decreases.
Resumo:
We studied the optical properties of a strain-induced direct-band-gap Ge quantum well embedded in InGaAs. We showed that the band offsets depend on the electronegativity of the layer in contact with Ge, leading to different types of optical transitions in the heterostructure. When group-V atoms compose the interfaces, only electrons are confined in Ge, whereas both carriers are confined when the interface consists of group-III atoms. The different carrier confinement results in different emission dynamics behavior. This study provides a solution to obtain efficient light emission from Ge.
Resumo:
We report a method of growing site controlled InGaN multiple quantum discs (QDs) at uniform wafer scale on coalescence free ultra-high density (>80%) nanorod templates by metal organic chemical vapour deposition (MOCVD). The dislocation and coalescence free nature of the GaN space filling nanorod arrays eliminates the well-known emission problems seen in InGaN based visible light sources that these types of crystallographic defects cause. Correlative scanning transmission electron microscopy (STEM), energy-dispersive X-ray (EDX) mapping and cathodoluminescence (CL) hyperspectral imaging illustrates the controlled site selection of the red, yellow and green (RYG) emission at these nano tips. This article reveals that the nanorod tips' broad emission in the RYG visible range is in fact achieved by manipulating the InGaN QD's confinement dimensions, rather than significantly increasing the In%. This article details the easily controlled method of manipulating the QDs dimensions producing high crystal quality InGaN without complicated growth conditions needed for strain relaxation and alloy compositional changes seen for bulk planar GaN templates.
Resumo:
The use of InGaAs metamorphic buffer layers (MBLs) to facilitate the growth of lattice-mismatched heterostructures constitutes an attractive approach to developing long-wavelength semiconductor lasers on GaAs substrates, since they offer the improved carrier and optical confinement associated with GaAs-based materials. We present a theoretical study of GaAs-based 1.3 and 1.55 μm (Al)InGaAs quantum well (QW) lasers grown on InGaAs MBLs. We demonstrate that optimised 1.3 μm metamorphic devices offer low threshold current densities and high differential gain, which compare favourably with InP-based devices. Overall, our analysis highlights and quantifies the potential of metamorphic QWs for the development of GaAs-based long-wavelength semiconductor lasers, and also provides guidelines for the design of optimised devices.