9 resultados para Porous layers

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Porous InP layers were formed electrochemically on (100) oriented n-InP substrates in various concentrations of aqueous KOH under dark conditions. In KOH concentrations from 2 mol dm-3 to 5 mol dm-3, a porous layer is obtained underneath a dense near-surface layer. The pores within the porous layer appear to propagate from holes through the near-surface layer. Transmission electron microscopy studies of the porous layers formed under both potentiodynamic and potentiostatic conditions show that both the thickness of the porous layer and the mean pore diameter decrease with increasing KOH concentration. The degree of porosity, estimated to be 65%, was found to remain relatively constant for all the porous layers studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Porous layers can be formed electrochemically on (100) oriented n-InP substrates in aqueous KOH. A nanoporous layer is obtained underneath a dense near-surface layer and the pores appear to propagate from holes through the near-surface layer. In the early stages of the anodization transmission electron microscopy (TEM) clearly shows individual porous domains that appear to have a square-based pyramidal shape. Each domain appears to develop from an individual surface pit which forms a channel through this near-surface layer. We suggest that the pyramidal structure arises as a result of preferential pore propagation along the <100> directions. AFM measurements show that the density of surface pits increases with time. Each of these pits acts as a source for a pyramidal porous domain. When the domains grow, the current density increases correspondingly. Eventually the domains meet, forming a continuous porous layer, the interface between the porous and bulk InP becomes relatively flat and its total effective surface area decreases resulting in a decrease in the current density. Current-time curves at constant potential exhibit a peak and porous layers are observed to form beneath the electrode surface. The density of pits formed on the surface increases with time and approaches a plateau value. Porous layers are also observed in highly doped InP but are not observed in wafers with doping densities below ~5 × 1017 cm-3. Numerical models of this process have been developed invoking a mechanism of directional selectivity of pore growth preferentially along the <100> lattice directions. Manipulation of the parameters controlling these curves shows that the fall-off in current is controlled by the rate of diffusion of electrolyte through the pore structure with the final decline in current being caused by the termination of growth at the pore tips through the formation of passivating films or some other irreversible modification of the pore tips.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The anodic behavior of InP in 1 mol dm-3 KOH was investigated and compared with its behavior at higher concentrations of KOH. At concentrations of 2 mol dm-3 KOH or greater, selective etching of InP occurs leading to thick porous InP layers near the surface of the sustrate. In contrast, in 1 mol dm-3 KOH, no such porous layers are formed but a thin surface film is formed at potentials in the range 0.6 V to 1.3 V. The thickness of this film was determined by spectroscopic ellipsometry as a function of the upper potential and the measured film thickness corresponds to the charge passed up to a potential of 1.0 V. Anodization to potentials above 1.5 V in 1 mol dm- 3 KOH results in the growth of thick, porous oxide films (~ 1.2 µm). These films are observed to crack, ex-situ, due to shrinkage after drying in ambient air. Comparisons between the charge density and film thickness measurements indicate a porosity of approximately 77% for such films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review our recent work on the anodization of InP in KOH electrolytes. The anodic oxidation processes are shown to be remarkably different in different concentrations of KOH. Anodization in 2 - 5 mol dm-3 KOH electrolytes results in the formation of porous InP layers but, under similar conditions in a 1 mol dm-3 KOH, no porous structure is evident. Rather, the InP electrode is covered with a thin, compact surface film at lower potentials and, at higher potentials, a highly porous surface film is formed which cracks on drying. Anodization of electrodes in 2 - 5 mol dm-3 KOH results in the formation of porous InP under both potential sweep and constant potential conditions. The porosity is estimated at ~65%. A thin layer (~ 30 nm) close to the surface appears to be unmodified. It is observed that this dense, near-surface layer is penetrated by a low density of pores which appear to connected it to the electrolyte. Well-defined oscillations are observed when InP is anodized in both the KOH and (NH4)2S. The charge per cycle remains constant at 0.32 C cm-2 in (NH4)2S but increases linearly with potential in KOH. Although the characteristics of the oscillations in the two systems differ, both show reproducible and well-behaved values of charge per cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin layers of indium tin oxide are widely used as transparent coatings and electrodes in solar energy cells, flat-panel displays, antireflection coatings, radiation protection and lithium-ion battery materials, because they have the characteristics of low resistivity, strong absorption at ultraviolet wavelengths, high transmission in the visible, high reflectivity in the far-infrared and strong attenuation in the microwave region. However, there is often a trade-off between electrical conductivity and transparency at visible wavelengths for indium tin oxide and other transparent conducting oxides. Here, we report the growth of layers of indium tin oxide nanowires that show optimum electronic and photonic properties and demonstrate their use as fully transparent top contacts in the visible to near-infrared region for light-emitting devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both low-dimensional bar-coded metal oxide layers, which exhibit molecular hinging, and free-standing organic nanostructures can be obtained from unique nanofibers of vanadium oxide (VOx). The nanofibers are successfully synthesized by a simple chemical route using an ethanolic solution of vanadium pentoxide xerogel and dodecanethiol resulting in a double bilayered laminar turbostratic structure. The formation of vanadium oxide nanofibers is observed after hydrothermal treatment of the thiol-intercalated xerogel, resulting in typical lengths in the range 2–6 µm and widths of about 50–500 nm. We observe concomitant hinging of the flexible nanofiber lamina at periodic hinge points in the final product on both the nanoscale and molecular level. Bar-coded nanofibers comprise alternating segments of organic–inorganic (thiols–VOx) material and are amenable to segmented, localized metal nanoparticle docking. Under certain conditions free-standing bilayered organic nanostructures are realized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The observation of spontaneous oscillations in current during the anodization of InP in relatively high concentrations of KOH electrolytes is reported. Oscillations were observed under potential sweep and constant potential conditions. Well-defined oscillations are observed during linear potential sweeps of InP in 5 mol dm-3 KOH to potentials above ∼1.7 V (SCE) at scan rates in the range of 50 to 500 mV s-1. The oscillations observed exhibit an asymmetrical current versus potential profile, and the charge per cycle was found to increase linearly with potential. More complex oscillatory behavior was observed under constant potential conditions. Periodic damped oscillations are observed in high concentrations of electrolyte whereas undamped sinusoidal oscillations are observed in relatively lower concentrations. In both cases, the anodization of InP results in porous InP formation, and the current in the oscillatory region corresponds to the cyclical effective area changes due to pitting dissolution of the InP surface with the coincidental growth of a thick porous In2O3 film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface pitting occurs when InP electrodes are anodized in KOH electrolytes at concentrations in the range 2 - 5 mol dm-3. The process has been investigated using atomic force microscopy (AFM) and the results correlated with cross-sectional transmission electron microscopy (TEM) and electroanalytical measurements. AFM measurements show that pitting of the surface occurs and the density of pits is observed to increase with time under both potentiodynamic and potentiostatic conditions. This indicates a progressive pit nucleation process and implies that the development of porous domains beneath the surface is also progressive in nature. Evidence for this is seen in plan view TEM images in which individual domains are seen to be at different stages of development. Analysis of the cyclic voltammograms of InP electrodes in 5 mol dm-3 KOH indicates that, above a critical potential for pit formation, the anodic current is predominantly time dependent and there is little differential dependence of the current on potential. Thus, pores continue to grow with time when the potential is high enough to maintain depletion layer breakdown conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the optical properties of a strain-induced direct-band-gap Ge quantum well embedded in InGaAs. We showed that the band offsets depend on the electronegativity of the layer in contact with Ge, leading to different types of optical transitions in the heterostructure. When group-V atoms compose the interfaces, only electrons are confined in Ge, whereas both carriers are confined when the interface consists of group-III atoms. The different carrier confinement results in different emission dynamics behavior. This study provides a solution to obtain efficient light emission from Ge.