9 resultados para Piezoelectric
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The goal of this research is to produce a system for powering medical implants to increase the lifetime of the implanted devices and reduce the battery size. The system consists of a number of elements – the piezoelectric material for generating power, the device design, the circuit for rectification and energy storage. The piezoelectric material is analysed and a process for producing a repeatable high quality piezoelectric material is described. A full width half maximum (FWHM) of the rocking curve X-Ray diffraction (XRD) scan of between ~1.5° to ~1.7° for test wafers was achieved. This is state of the art for AlN on silicon and means devices with good piezoelectric constants can be fabricated. Finite element modelling FEM) was used to design the structures for energy harvesting. The models developed in this work were established to have an accuracy better than 5% in terms of the difference between measured and modelled results. Devices made from this material were analysed for power harvesting ability as well as the effect that they have on the flow of liquid which is an important consideration for implantable devices. The FEM results are compared to experimental results from laser Doppler vibrometry (LDV), magnetic shaker and perfusion machine tests. The rectifying circuitry for the energy harvester was also investigated. The final solution uses multiple devices to provide the power to augment the battery and so this was a key feature to be considered. Many circuits were examined and a solution based on a fully autonomous circuit was advanced. This circuit was analysed for use with multiple low power inputs similar to the results from previous investigations into the energy harvesting devices. Polymer materials were also studied for use as a substitute for the piezoelectric material as well as the substrate because silicon is more brittle.
Resumo:
Nanostructured materials are central to the evolution of future electronics and information technologies. Ferroelectrics have already been established as a dominant branch in the electronics sector because of their diverse application range such as ferroelectric memories, ferroelectric tunnel junctions, etc. The on-going dimensional downscaling of materials to allow packing of increased numbers of components onto integrated circuits provides the momentum for the evolution of nanostructured ferroelectric materials and devices. Nanoscaling of ferroelectric materials can result in a modification of their functionality, such as phase transition temperature or Curie temperature (TC), domain dynamics, dielectric constant, coercive field, spontaneous polarisation and piezoelectric response. Furthermore, nanoscaling can be used to form high density arrays of monodomain ferroelectric nanostructures, which is desirable for the miniaturisation of memory devices. This thesis details the use of various types of nanostructuring approaches to fabricate arrays of ferroelectric nanostructures, particularly non-oxide based systems. The introductory chapter reviews some exemplary research breakthroughs in the synthesis, characterisation and applications of nanoscale ferroelectric materials over the last decade, with priority given to novel synthetic strategies. Chapter 2 provides an overview of the experimental methods and characterisation tools used to produce and probe the properties of nanostructured antimony sulphide (Sb2S3), antimony sulpho iodide (SbSI) and lead titanate zirconate (PZT). In particular, Chapter 2 details the general principles of piezoresponse microscopy (PFM). Chapter 3 highlights the fabrication of arrays of Sb2S3 nanowires with variable diameters using newly developed solventless template-based approach. A detailed account of domain imaging and polarisation switching of these nanowire arrays is also provided. Chapter 4 details the preparation of vertically aligned arrays of SbSI nanorods and nanowires using a surface-roughness assisted vapour-phase deposition method. The qualitative and quantitative nanoscale ferroelectric properties of these nanostructures are also discussed. Chapter 5 highlights the fabrication of highly ordered arrays of PZT nanodots using block copolymer self-assembled templates and their ferroelectric characterisation using PFM. Chapter 6 summarises the conclusions drawn from the results reported in chapters 3, 4 and 5 and the future work.
Resumo:
The deposition by atomic vapor deposition of highly c-axis-oriented Aurivillius phase Bi 5Ti 3FeO 15 (BTFO) thin films on (100) Si substrates is reported. Partially crystallized BTFO films with c-axis perpendicular to the substrate surface were first deposited at 610°C (8 excess Bi), and subsequently annealed at 820°C to get stoichiometric composition. After annealing, the films were highly c-axis-oriented, showing only (00l) peaks in x-ray diffraction (XRD), up to (0024). Transmission electron microscopy (TEM) confirms the BTFO film has a clear layered structure, and the bismuth oxide layer interleaves the four-block pseudoperovskite layer, indicating the n 4 Aurivillius phase structure. Piezoresponse force microscopy measurements indicate strong in-plane piezoelectric response, consistent with the c-axis layered structure, shown by XRD and TEM.
Resumo:
Aurivillius phase Bi 5Ti 3Fe 0.7Co 0.3O 15 (BTF7C3O) thin films on α-quartz substrates were fabricated by a chemical solution deposition method and the room temperature ferroelectric and magnetic properties of this candidate multiferroic were compared with those of thin films of Mn 3 substituted, Bi 5Ti 3Fe 0.7Mn 0.3O 15 (BTF7M3O). Vertical and lateral piezoresponse force microscopy (PFM) measurements of the films conclusively demonstrate that BTF7C3O and BTF7M3O thin films are piezoelectric and ferroelectric at room temperature, with the major polarization vector in the lateral plane of the films. No net magnetization was observed for the in-plane superconducting quantum interference device (SQUID) magnetometry measurements of BTF7M3O thin films. In contrast, SQUID measurements of the BTF7C3O films clearly demonstrated ferromagnetic behavior, with a remanent magnetization, B r, of 6.37 emu/cm 3 (or 804 memu/g), remanent moment 4.99 × 10 -5 emu. The BTF7C3O films were scrutinized by x-ray diffraction, high resolution transmission electron microscopy, scanning transmission electron microscopy, and energy dispersive x-ray analysis mapping to assess the prospect of the observed multiferroic properties being intrinsic to the main phase. The results of extensive micro-structural phase analysis demonstrated that the BTF7C3O films comprised of a 3.95 Fe/Co-rich spinel phase, likely CoFe 2 - xTi xO 4, which would account for the observed magnetic moment in the films. Additionally, x-ray magnetic circular dichroism photoemission electron microscopy (XMCD-PEEM) imaging confirmed that the majority of magnetic response arises from the Fe sites of Fe/Co-rich spinel phase inclusions. While the magnetic contribution from the main phase could not be determined by the XMCD-PEEM images, these data however imply that the Bi 5Ti 3Fe 0.7Co 0.3O 15 thin films are likely not single phase multiferroics at room temperature. The PFM results presented demonstrate that the naturally 2D nanostructured Bi 5Ti 3Fe 0.7Co 0.3O 15 phase is a novel ferroelectric and has potential commercial applications in high temperature piezoelectric and ferroelectric memory technologies. The implications for the conclusive demonstration of ferroelectric and ferromagnetic properties in single-phase materials of this type are discussed.
Resumo:
Aurivillius phase thin films of Bi5Ti3(FexMn1−x)O15 with x = 1 (Bi5Ti3FeO15) and 0.7 (Bi5Ti3Fe0.7Mn0.3O15) on SiO2-Si(100) and Pt/Ti/SiO2-Si substrates were fabricated by chemical solution deposition. The method was optimized in order to suppress formation of pyrochlore phase Bi2Ti2O7 and improve crystallinity. The structuralproperties of the films were examined by x-ray diffraction, scanning electron microscopy, and atomic force microscopy. Optimum crystallinity and pyrochlore phase suppression was achieved by the addition of 15 to 25 mol. % excess bismuth to the sols. Based on this study, 17.5 mol. % excess bismuth was used in the preparation of Bi2Ti2O7-free films of Bi5Ti3FeO15 on SrTiO3(100) and NdGaO3(001) substrates, confirming the suppression of pyrochlore phase using this excess of bismuth. Thirty percent of the Fe3+ ions in Bi5Ti3FeO15 was substituted with Mn3+ ions to form Bi2Ti2O7-free thin films of Bi5Ti3Fe0.7Mn0.3O15 on Pt/Ti/SiO2-Si, SiO2-Si(100), SrTiO3(100), and NdGaO3(001) substrates. Bi5Ti3FeO15 and Bi5Ti3Fe0.7Mn0.3O15thin films on Pt/Ti/SiO2-Si and SiO2-Si(100) substrates were achieved with a higher degree of a-axis orientation compared with the films on SrTiO3(100) and NdGaO3(001) substrates. Room temperature electromechanical and magnetic properties of the thin films were investigated in order to assess the potential of these materials for piezoelectric,ferroelectric, and multiferroic applications. Vertical piezoresponse force microscopy measurements of the films demonstrate that Bi5Ti3FeO15 and Bi5Ti3Fe0.7Mn0.3O15thin films are piezoelectric at room temperature. Room temperature switching spectroscopy-piezoresponse force microscopy measurements in the presence and absence of an applied bias demonstrate local ferroelectric switching behaviour (180°) in the films. Superconducting quantum interference device magnetometry measurements do not show any room temperature ferromagnetic hysteresis down to an upper detection limit of 2.53 × 10−3 emu; and it is concluded, therefore, that such films are not mutiferroic at room temperature. Piezoresponse force microscopy lithography images of Bi5Ti3Fe0.7Mn0.3O15thin films are presented.
Resumo:
Delivery of large molecular weight biological molecules to the epidermis and dermis is constrained by the tough outer layer of the epidermis, the stratum corneum (sc). Microneedle technologies attempt to overcome this physical barrier using sharp micron-size projections to penetrate the sc. Dissolvable microneedles (DMN), are a particular microneedle design whereby the needle structure is composed of a soluble matrix that upon application to the skin, dissolves releasing the vaccine load into skin. This thesis examines (1) the formulation and processing considerations around DMN fabrication, (2) the immunogenicity of DMN containing trivalent influenza vaccine (TIV) in pre-clinical mouse and pig models and (3) the thermostability of these DMN formulations during storage. The results demonstrate the importance of formulation for microneedle formation and mechanical strength. Trehalose and polyvinylalcohol based formulations produced optimal microneedle structures and were amenable to piezoelectric dispensing; allowing for precise multi-layered DMN to be fabricated. The effect of drying conditions was assessed and found to be critical for DMN mechanical strength and skin penetration. The antibody responses to TIV generated by DMN-mediated vaccination were comparable or greater to those induced by immunization with a commercial TIV via the IM route in mice. DMN mediated immunisation resulted in a significantly broader humoral response to heterotypic influenza viruses compared to IM delivery. Stored at 40°C, a licensed seasonal influenza vaccine incorporated into DMN array was thermostable for at least 6 month as determined by Single Radial Immunodiffusion and immunogenicity in mice. The thesis advances the field of DMN influenza vaccination by elucidating important processing and formulation considerations in the fabrication of highly reproducible DMN. It also demonstrated that DMN can induce broader, larger humoral responses than conventional IM administration while demonstrating enhanced accelerated stability. Crucially, this works advances an automated fabrication system that will allow for clinical translation of DMN.
Resumo:
The use of structural health monitoring of civil structures is ever expanding and by assessing the dynamical condition of structures, informed maintenance management can be conducted at both individual and network levels. With the continued growth of information age technology, the potential arises for smart monitoring systems to be integrated with civil infrastructure to provide efficient information on the condition of a structure. The focus of this thesis is the integration of smart technology with civil infrastructure for the purposes of structural health monitoring. The technology considered in this regard are devices based on energy harvesting materials. While there has been considerable focus on the development and optimisation of such devices using steady state loading conditions, their applications for civil infrastructure are less known. Although research is still in initial stages, studies into the uses associated with such applications are very promising. Through the use of the dynamical response of structures to a variety of loading conditions, the energy harvesting outputs from such devices is established and the potential power output determined. Through a power variance output approach, damage detection of deteriorating structures using the energy harvesting devices is investigated. Further applications of the integration of energy harvesting devices with civil infrastructure investigated by this research includes the use of the power output as a indicator for control. Four approaches are undertaken to determine the potential applications arising from integrating smart technology with civil infrastructure, namely • Theoretical analysis to determine the applications of energy harvesting devices for vibration based health monitoring of civil infrastructure. • Laboratory experimentation to verify the performance of different energy harvesting configurations for civil infrastructure applications. • Scaled model testing as a method to experimentally validate the integration of the energy harvesting devices with civil infrastructure. • Full scale deployment of energy harvesting device with a bridge structure. These four approaches validate the application of energy harvesting technology with civil infrastructure from a theoretical, experimental and practical perspective.
Resumo:
This thesis divides into two distinct parts, both of which are underpinned by the tight-binding model. The first part covers our implementation of the tight-binding model in conjunction with the Berry phase theory of electronic polarisation to probe the atomistic origins of spontaneous polarisation and piezoelectricity as well as attempting to accurately calculate the values and coefficients associated with these phenomena. We first develop an analytic model for the polarisation of a one-dimensional linear chain of atoms. We compare the zincblende and ideal wurtzite structures in terms of effective charges, spontaneous polarisation and piezoelectric coefficients, within a first nearest neighbour tight-binding model. We further compare these to real wurtzite structures and conclude that accurate quantitative results are beyond the scope of this model but qualitative trends can still be described. The second part of this thesis deals with implementing the tight-binding model to investigate the effect of local alloy fluctuations in bulk AlGaN alloys and InGaN quantum wells. We calculate the band gap evolution of Al1_xGaxN across the full composition range and compare it to experiment as well as fitting bowing parameters to the band gap as well as to the conduction band and valence band edges. We also investigate the wavefunction character of the valence band edge to determine the composition at which the optical polarisation switches in Al1_xGaxN alloys. Finally, we examine electron and hole localisation in InGaN quantum wells. We show how the built-in field localises the carriers along the c-axis and how local alloy fluctuations strongly localise the highest hole states in the c-plane, while the electrons remain delocalised in the c-plane. We show how this localisation affects the charge density overlap and also investigate the effect of well width fluctuations on the localisation of the electrons.
Resumo:
This paper reports on a low frequency piezoelectric energy harvester that scavenges energy from a wire carrying an AC current. The harvester is described, fabricated and characterized. The device consists of a silicon cantilever with integrated piezoelectric capacitor and proof-mass that incorporates a permanent magnet. When brought close to an AC current carrying wire, the magnet couples to the AC magnetic field from a wire, causing the cantilever to vibrate and generate power. The measured average power dissipated across an optimal resistive load was 1.5 μW. This was obtained by exciting the device into mechanical resonance using the electro-magnetic field from the 2 A source current. The measurements also reveal that the device has a nonlinear response that is due to a spring hardening mechanism.