3 resultados para Optical properties.
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Semiconductor nanowires, based on silicon (Si) or germanium (Ge) are leading candidates for many ICT applications, including next generation transistors, optoelectronics, gas and biosensing and photovoltaics. Key to these applications is the possibility to tune the band gap by changing the diameter of the nanowire. Ge nanowires of different diameter have been studied with H termination, but, using ideas from chemistry, changing the surface terminating group can be used to modulate the band gap. In this paper we apply the generalised gradient approximation of density functional theory (GGA-DFT) and hybrid DFT to study the effect of diameter and surface termination using –H, –NH2 and –OH groups on the band gap of (001), (110) and (111) oriented germanium nanowires. We show that the surface terminating group allows both the magnitude and the nature of the band gap to be changed. We further show that the absorption edge shifts to longer wavelength with the –NH2 and –OH terminations compared to the –H termination and we trace the origin of this effect to valence band modifications upon modifying the nanowire with –NH2 or –OH. These results show that it is possible to tune the band gap of small diameter Ge nanowires over a range of ca. 1.1 eV by simple surface chemistry.
Resumo:
As part of the EUCAARI Intensive Observing Period, a 4-week campaign to measure aerosol physical, chemical and optical properties, atmospheric structure, and cloud microphysics was conducted from mid-May to mid-June, 2008 at the Mace Head Atmospheric Research Station, located at the interface of Western Europe and the N. E. Atlantic and centered on the west Irish coastline. During the campaign, continental air masses comprising both young and aged continental plumes were encountered, along with polar, Arctic and tropical air masses. Polluted-continental aerosol concentrations were of the order of 3000 cm(-3), while background marine air aerosol concentrations were between 400-600 cm(-3). The highest marine air concentrations occurred in polar air masses in which a 15 nm nucleation mode, with concentration of 1100 cm(-3), was observed and attributed to open ocean particle formation. Continental air submicron chemical composition (excluding refractory sea salt) was dominated by organic matter, closely followed by sulphate mass. Although the concentrations and size distribution spectral shape were almost identical for the young and aged continental cases, hygroscopic growth factors (GF) and cloud condensation nuclei (CCN) to total condensation nuclei (CN) concentration ratios were significantly less in the younger pollution plume, indicating a more oxidized organic component to the aged continental plume. The difference in chemical composition and hygroscopic growth factor appear to result in a 40-50% impact on aerosol scattering coefficients and Aerosol Optical Depth, despite almost identical aerosol microphysical properties in both cases, with the higher values been recorded for the more aged case. For the CCN/CN ratio, the highest ratios were seen in the more age plume. In marine air, sulphate mass dominated the sub-micron component, followed by water soluble organic carbon, which, in turn, was dominated by methanesulphonic acid (MSA). Sulphate concentrations were highest in marine tropical air - even higher than in continental air. MSA was present at twice the concentrations of previously-reported concentrations at the same location and the same season. Both continental and marine air exhibited aerosol GFs significantly less than ammonium sulphate aerosol pointing to a significant organic contribution to all air mass aerosol properties.
Resumo:
We studied the optical properties of a strain-induced direct-band-gap Ge quantum well embedded in InGaAs. We showed that the band offsets depend on the electronegativity of the layer in contact with Ge, leading to different types of optical transitions in the heterostructure. When group-V atoms compose the interfaces, only electrons are confined in Ge, whereas both carriers are confined when the interface consists of group-III atoms. The different carrier confinement results in different emission dynamics behavior. This study provides a solution to obtain efficient light emission from Ge.