4 resultados para Low-noise measurements
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This work looks at the effect on mid-gap interface state defect density estimates for In0.53Ga0.47As semiconductor capacitors when different AC voltage amplitudes are selected for a fixed voltage bias step size (100 mV) during room temperature only electrical characterization. Results are presented for Au/Ni/Al2O3/In0.53Ga0.47As/InP metal–oxide–semiconductor capacitors with (1) n-type and p-type semiconductors, (2) different Al2O3 thicknesses, (3) different In0.53Ga0.47As surface passivation concentrations of ammonium sulphide, and (4) different transfer times to the atomic layer deposition chamber after passivation treatment on the semiconductor surface—thereby demonstrating a cross-section of device characteristics. The authors set out to determine the importance of the AC voltage amplitude selection on the interface state defect density extractions and whether this selection has a combined effect with the oxide capacitance. These capacitors are prototypical of the type of gate oxide material stacks that could form equivalent metal–oxide–semiconductor field-effect transistors beyond the 32 nm technology node. The authors do not attempt to achieve the best scaled equivalent oxide thickness in this work, as our focus is on accurately extracting device properties that will allow the investigation and reduction of interface state defect densities at the high-k/III–V semiconductor interface. The operating voltage for future devices will be reduced, potentially leading to an associated reduction in the AC voltage amplitude, which will force a decrease in the signal-to-noise ratio of electrical responses and could therefore result in less accurate impedance measurements. A concern thus arises regarding the accuracy of the electrical property extractions using such impedance measurements for future devices, particularly in relation to the mid-gap interface state defect density estimated from the conductance method and from the combined high–low frequency capacitance–voltage method. The authors apply a fixed voltage step of 100 mV for all voltage sweep measurements at each AC frequency. Each of these measurements is repeated 15 times for the equidistant AC voltage amplitudes between 10 mV and 150 mV. This provides the desired AC voltage amplitude to step size ratios from 1:10 to 3:2. Our results indicate that, although the selection of the oxide capacitance is important both to the success and accuracy of the extraction method, the mid-gap interface state defect density extractions are not overly sensitive to the AC voltage amplitude employed regardless of what oxide capacitance is used in the extractions, particularly in the range from 50% below the voltage sweep step size to 50% above it. Therefore, the use of larger AC voltage amplitudes in this range to achieve a better signal-to-noise ratio during impedance measurements for future low operating voltage devices will not distort the extracted interface state defect density.
Resumo:
A newly developed framework for quantifying aerosol particle diversity and mixing state based on information-theoretic entropy is applied for the first time to single particle mass spectrometry field data. Single particle mass fraction estimates for black carbon, organic aerosol, ammonium, nitrate and sulfate, derived using single particle mass spectrometer, aerosol mass spectrometer and multi-angle absorption photometer measurements are used to calculate single particle species diversity (Di). The average single particle species diversity (Dα) is then related to the species diversity of the bulk population (Dγ) to derive a mixing state index value (χ) at hourly resolution. The mixing state index is a single parameter representation of how internally/externally mixed a particle population is at a given time. The index describes a continuum, with values of 0 and 100% representing fully external and internal mixing, respectively. This framework was applied to data collected as part of the MEGAPOLI winter campaign in Paris, France, 2010. Di values are low (∼ 2) for fresh traffic and wood-burning particles that contain high mass fractions of black carbon and organic aerosol but low mass fractions of inorganic ions. Conversely, Di values are higher (∼ 4) for aged carbonaceous particles containing similar mass fractions of black carbon, organic aerosol, ammonium, nitrate and sulfate. Aerosol in Paris is estimated to be 59% internally mixed in the size range 150-1067 nm, and mixing state is dependent both upon time of day and air mass origin. Daytime primary emissions associated with vehicular traffic and wood-burning result in low χ values, while enhanced condensation of ammonium nitrate on existing particles at night leads to higher χ values. Advection of particles from continental Europe containing ammonium, nitrate and sulfate leads to increases in Dα, Dγ and χ. The mixing state index represents a useful metric by which to compare and contrast ambient particle mixing state at other locations globally.
Resumo:
We report the results of direct measurement of remanent hysteresis loops on nanochains of BiFeO3 at room temperature under zero and ∼20 kOe magnetic field. We noticed a suppression of remanent polarization by nearly ∼40% under the magnetic field. The powder neutron diffraction data reveal significant ion displacements under a magnetic field which seems to be the origin of the suppression of polarization. The isolated nanoparticles, comprising the chains, exhibit evolution of ferroelectric domains under dc electric field and complete 180 switching in switching-spectroscopy piezoresponse force microscopy. They also exhibit stronger ferromagnetism with nearly an order of magnitude higher saturation magnetization than that of the bulk sample. These results show that the nanoscale BiFeO3 exhibits coexistence of ferroelectric and ferromagnetic order and a strong magnetoelectric multiferroic coupling at room temperature comparable to what some of the type-II multiferroics show at a very low temperature.
Resumo:
This paper reports on a low frequency piezoelectric energy harvester that scavenges energy from a wire carrying an AC current. The harvester is described, fabricated and characterized. The device consists of a silicon cantilever with integrated piezoelectric capacitor and proof-mass that incorporates a permanent magnet. When brought close to an AC current carrying wire, the magnet couples to the AC magnetic field from a wire, causing the cantilever to vibrate and generate power. The measured average power dissipated across an optimal resistive load was 1.5 μW. This was obtained by exciting the device into mechanical resonance using the electro-magnetic field from the 2 A source current. The measurements also reveal that the device has a nonlinear response that is due to a spring hardening mechanism.