3 resultados para Isomorphic classification of C(K, X) spaces

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deposition by atomic vapor deposition of highly c-axis-oriented Aurivillius phase Bi 5Ti 3FeO 15 (BTFO) thin films on (100) Si substrates is reported. Partially crystallized BTFO films with c-axis perpendicular to the substrate surface were first deposited at 610°C (8 excess Bi), and subsequently annealed at 820°C to get stoichiometric composition. After annealing, the films were highly c-axis-oriented, showing only (00l) peaks in x-ray diffraction (XRD), up to (0024). Transmission electron microscopy (TEM) confirms the BTFO film has a clear layered structure, and the bismuth oxide layer interleaves the four-block pseudoperovskite layer, indicating the n 4 Aurivillius phase structure. Piezoresponse force microscopy measurements indicate strong in-plane piezoelectric response, consistent with the c-axis layered structure, shown by XRD and TEM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As silicon based devices in integrated circuits reach the fundamental limits of dimensional scaling there is growing research interest in the use of high electron mobility channel materials, such as indium gallium arsenide (InGaAs), in conjunction with high dielectric constant (high-k) gate oxides, for Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) based devices. The motivation for employing high mobility channel materials is to reduce power dissipation in integrated circuits while also providing improved performance. One of the primary challenges to date in the field of III-V semiconductors has been the observation of high levels of defect densities at the high-k/III-V interface, which prevents surface inversion of the semiconductor. The work presented in this PhD thesis details the characterization of MOS devices incorporating high-k dielectrics on III-V semiconductors. The analysis examines the effect of modifying the semiconductor bandgap in MOS structures incorporating InxGa1-xAs (x: 0, 0.15. 0.3, 0.53) layers, the optimization of device passivation procedures designed to reduce interface defect densities, and analysis of such electrically active interface defect states for the high-k/InGaAs system. Devices are characterized primarily through capacitance-voltage (CV) and conductance-voltage (GV) measurements of MOS structures both as a function of frequency and temperature. In particular, the density of electrically active interface states was reduced to the level which allowed the observation of true surface inversion behavior in the In0.53Ga0.47As MOS system. This was achieved by developing an optimized (NH4)2S passivation, minimized air exposure, and atomic layer deposition of an Al2O3 gate oxide. An extraction of activation energies allows discrimination of the mechanisms responsible for the inversion response. Finally a new approach is described to determine the minority carrier generation lifetime and the oxide capacitance in MOS structures. The method is demonstrated for an In0.53Ga0.47As system, but is generally applicable to any MOS structure exhibiting a minority carrier response in inversion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac Syndrome X (CSX), the presence of angina pectoris with objective signs of myocardial ischaemia despite angiographically normal epicardial coronary arteries, appears to be due to coronary microvascular dysfunction and is known to be associated with an elevation of several inflammatory biomarkers, suggesting a possible role for inflammation in its pathogenesis. We aimed to further characterise this relationship by prospectively analysing a wide variety of molecular biomarkers in a cohort of CSX patients thereby charting the changes in biomarkers throughout the natural history of CSX from its initial diagnosis to eventual disease quiescence. We found that CSX patients, when compared to healthy controls, have a persistent low-grade systemic inflammatory response characterised by an elevation of Tumour Necrosis Factor and Interferon-gamma, regardless of the presence of contemporaneous signs or symptoms of disease activity. Interleukin-6 and C-reactive Protein (CRP) are only elevated when patients have clinical evidence of disease activity and may be state markers in CSX. Moreover, CRP levels appear to correlate with signals of disease severity such as the time taken to develop symptoms during exercise stress testing. We have also demonstrated that the enzyme Indoleamine-2,3- dioxygenase is upregulated in active disease thus providing a possible explanation for the increased burden of psychological disease encountered in CSX. Analysis of the microRNA transcriptome showed that miR-143 is significantly under-expressed in CSX patients. This could allow phenotype switching in vascular smooth muscle cells with the resultant vascular remodelling causing reduced vessel responsiveness to local rheological stimuli and reduced luminal diameter with consequent increased microvascular resistance during times of increased myocardial oxygen demand, thereby limiting maximal hyperaemia during exercise. Our findings corroborate many previous hypotheses regarding the role of inflammation in CSX, generate new insights into possible pathogenic mechanisms and offer new therapeutic targets for the future management of this important cardiological condition.