12 resultados para GaAs-based (Al)InGaAs metamorphic quantum well lasers

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of InGaAs metamorphic buffer layers (MBLs) to facilitate the growth of lattice-mismatched heterostructures constitutes an attractive approach to developing long-wavelength semiconductor lasers on GaAs substrates, since they offer the improved carrier and optical confinement associated with GaAs-based materials. We present a theoretical study of GaAs-based 1.3 and 1.55 μm (Al)InGaAs quantum well (QW) lasers grown on InGaAs MBLs. We demonstrate that optimised 1.3 μm metamorphic devices offer low threshold current densities and high differential gain, which compare favourably with InP-based devices. Overall, our analysis highlights and quantifies the potential of metamorphic QWs for the development of GaAs-based long-wavelength semiconductor lasers, and also provides guidelines for the design of optimised devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the optical properties of a strain-induced direct-band-gap Ge quantum well embedded in InGaAs. We showed that the band offsets depend on the electronegativity of the layer in contact with Ge, leading to different types of optical transitions in the heterostructure. When group-V atoms compose the interfaces, only electrons are confined in Ge, whereas both carriers are confined when the interface consists of group-III atoms. The different carrier confinement results in different emission dynamics behavior. This study provides a solution to obtain efficient light emission from Ge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incumbent telecommunication lasers emitting at 1.5 µm are fabricated on InP substrates and consist of multiple strained quantum well layers of the ternary alloy InGaAs, with barriers of InGaAsP or InGaAlAs. These lasers have been seen to exhibit very strong temperature dependence of the threshold current. This strong temperature dependence leads to a situation where external cooling equipment is required to stabilise the optical output power of these lasers. This results in a significant increase in the energy bill associated with telecommunications, as well as a large increase in equipment budgets. If the exponential growth trend of end user bandwidth demand associated with the internet continues, these inefficient lasers could see the telecommunications industry become the dominant consumer of world energy. For this reason there is strong interest in developing new, much more efficient telecommunication lasers. One avenue being investigated is the development of quantum dot lasers on InP. The confinement experienced in these low dimensional structures leads to a strong perturbation of the density of states at the band edge, and has been predicted to result in reduced temperature dependence of the threshold current in these devices. The growth of these structures is difficult due to the large lattice mismatch between InP and InAs; however, recently quantum dots elongated in one dimension, known as quantum dashes, have been demonstrated. Chapter 4 of this thesis provides an experimental analysis of one of these quantum dash lasers emitting at 1.5 µm along with a numerical investigation of threshold dynamics present in this device. Another avenue being explored to increase the efficiency of telecommunications lasers is bandstructure engineering of GaAs-based materials to emit at 1.5 µm. The cause of the strong temperature sensitivity in InP-based quantum well structures has been shown to be CHSH Auger recombination. Calculations have shown and experiments have verified that the addition of bismuth to GaAs strongly reduces the bandgap and increases the spin orbit splitting energy of the alloy GaAs1−xBix. This leads to a bandstructure condition at x = 10 % where not only is 1.5 µm emission achieved on GaAs-based material, but also the bandstructure of the material can naturally suppress the costly CHSH Auger recombination which plagues InP-based quantum-well-based material. It has been predicted that telecommunications lasers based on this material system should operate in the absence of external cooling equipment and offer electrical and optical benefits over the incumbent lasers. Chapters 5, 6, and 7 provide a first analysis of several aspects of this material system relevant to the development of high bismuth content telecommunication lasers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of III-nitride materials (InN, GaN and AlN) gained huge research momentum after breakthroughs in the production light emitting diodes (LEDs) and laser diodes (LDs) over the past two decades. Last year, the Nobel Prize in Physics was awarded jointly to Isamu Akasaki, Hiroshi Amano and Shuji Nakamura for inventing a new energy efficient and environmental friendly light source: blue light-emitting diode (LED) from III-nitride semiconductors in the early 1990s. Nowadays, III-nitride materials not only play an increasingly important role in the lighting technology, but also become prospective candidates in other areas, for example, the high frequency (RF) high electron mobility transistor (HEMT) and photovoltaics. These devices require the growth of high quality III-nitride films, which can be prepared using metal organic vapour phase epitaxy (MOVPE). The main aim of my thesis is to study and develop the growth of III-nitride films, including AlN, u-AlGaN, Si-doped AlGaN, and InAlN, serving as sample wafers for fabrication of ultraviolet (UV) LEDs, in order to replace the conventional bulky, expensive and environmentally harmful mercury lamp as new UV light sources. For application to UV LEDs, reducing the threading dislocation density (TDD) in AlN epilayers on sapphire substrates is a key parameter for achieving high-efficiency AlGaNbased UV emitters. In Chapter 4, after careful and systematic optimisation, a working set of conditions, the screw and edge type dislocation density in the AlN were reduced to around 2.2×108 cm-2 and 1.3×109 cm-2 , respectively, using an optimized three-step process, as estimated by TEM. An atomically smooth surface with an RMS roughness of around 0.3 nm achieved over 5×5 µm 2 AFM scale. Furthermore, the motion of the steps in a one dimension model has been proposed to describe surface morphology evolution, especially the step bunching feature found under non-optimal conditions. In Chapter 5, control of alloy composition and the maintenance of compositional uniformity across a growing epilayer surface were demonstrated for the development of u-AlGaN epilayers. Optimized conditions (i.e. a high growth temperature of 1245 °C) produced uniform and smooth film with a low RMS roughness of around 2 nm achieved in 20×20 µm 2 AFM scan. The dopant that is most commonly used to obtain n-type conductivity in AlxGa1-xN is Si. However, the incorporation of Si has been found to increase the strain relaxation and promote unintentional incorporation of other impurities (O and C) during Si-doped AlGaN growth. In Chapter 6, reducing edge-type TDs is observed to be an effective appoach to improve the electric and optical properties of Si-doped AlGaN epilayers. In addition, the maximum electron concentration of 1.3×1019 cm-3 and 6.4×1018 cm-3 were achieved in Si-doped Al0.48Ga0.52N and Al0.6Ga0.4N epilayers as measured using Hall effect. Finally, in Chapter 7, studies on the growth of InAlN/AlGaN multiple quantum well (MQW) structures were performed, and exposing InAlN QW to a higher temperature during the ramp to the growth temperature of AlGaN barrier (around 1100 °C) will suffer a significant indium (In) desorption. To overcome this issue, quasi-two-tempeature (Q2T) technique was applied to protect InAlN QW. After optimization, an intense UV emission from MQWs has been observed in the UV spectral range from 320 to 350 nm measured by room temperature photoluminescence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare the optical properties and device performance of unpackaged InGaN/GaN multiple-quantum-well light-emitting diodes (LEDs) emitting at ∼430 nm grown simultaneously on a high-cost small-size bulk semipolar (11 2 - 2) GaN substrate (Bulk-GaN) and a low-cost large-size (11 2 - 2) GaN template created on patterned (10 1 - 2) r-plane sapphire substrate (PSS-GaN). The Bulk-GaN substrate has the threading dislocation density (TDD) of ∼ and basal-plane stacking fault (BSF) density of 0 cm-1, while the PSS-GaN substrate has the TDD of ∼2 × 108cm-2 and BSF density of ∼1 × 103cm-1. Despite an enhanced light extraction efficiency, the LED grown on PSS-GaN has two-times lower internal quantum efficiency than the LED grown on Bulk-GaN as determined by photoluminescence measurements. The LED grown on PSS-GaN substrate also has about two-times lower output power compared to the LED grown on Bulk-GaN substrate. This lower output power was attributed to the higher TDD and BSF density.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this thesis is to identify the relationship between subjective well-being and economic insecurity for public and private sector workers in Ireland using the European Social Survey 2010-2012. Life satisfaction and job satisfaction are the indicators used to measure subjective well-being. Economic insecurity is approximated by regional unemployment rates and self-perceived job insecurity. Potential sample selection bias and endogeneity bias are accounted for. It is traditionally believed that public sector workers are relatively more protected against insecurity due to very institution of public sector employment. The institution of public sector employment is made up of stricter dismissal practices (Luechinger et al., 2010a) and less volatile employment (Freeman, 1987) where workers are subsequently less likely to be affected by business cycle downturns (Clark and Postal-Vinay, 2009). It is found in the literature that economic insecurity depresses the well-being of public sector workers to a lesser degree than private sector workers (Luechinger et al., 2010a; Artz and Kaya, 2014). These studies provide the rationale for this thesis in testing for similar relationships in an Irish context. Sample selection bias arises when a selection into a particular category is not random (Heckman, 1979). An example of this is non-random selection into public sector employment based on personal characteristics (Heckman, 1979; Luechinger et al., 2010b). If selection into public sector employment is not corrected for this can lead to biased and inconsistent estimators (Gujarati, 2009). Selection bias of public sector employment is corrected for by using a standard Two-Step Heckman Probit OLS estimation method. Following Luechinger et al. (2010b), the propensity for individuals to select into public sector employment is estimated by a binomial probit model with the inclusion of the additional regressor Irish citizenship. Job satisfaction is then estimated by Ordinary Least Squares (OLS) with the inclusion of a sample correction term similar as is done in Clark (1997). Endogeneity is where an independent variable included in the model is determined within in the context of the model (Chenhall and Moers, 2007). The econometric definition states that an endogenous independent variable is one that is correlated with the error term (Wooldridge, 2010). Endogeneity is expected to be present due to a simultaneous relationship between job insecurity and job satisfaction whereby both variables are jointly determined (Theodossiou and Vasileiou, 2007). Simultaneity, as an instigator of endogeneity, is corrected for using Instrumental Variables (IV) techniques. Limited Information Methods and Full Information Methods of estimation of simultaneous equations models are assed and compared. The general results show that job insecurity depresses the subjective well-being of all workers in both the public and private sectors in Ireland. The magnitude of this effect differs among sectoral workers. The subjective well-being of private sector workers is more adversely affected by job insecurity than the subjective well-being of public sector workers. This is observed in basic ordered probit estimations of both a life satisfaction equation and a job satisfaction equation. The marginal effects from the ordered probit estimation of a basic job satisfaction equation show that as job insecurity increases the probability of reporting a 9 on a 10-point job satisfaction scale significantly decreases by 3.4% for the whole sample of workers, 2.8% for public sector workers and 4.0% for private sector workers. Artz and Kaya (2014) explain that as a result of many austerity policies implemented to reduce government expenditure during the economic recession, workers in the public sector may for the first time face worsening perceptions of job security which can have significant implications for their well-being (Artz and Kaya, 2014). This can be observed in the marginal effects where job insecurity negatively impacts the well-being of public sector workers in Ireland. However, in accordance with Luechinger et al. (2010a) the results show that private sector workers are more adversely impacted by economic insecurity than public sector workers. This suggests that in a time of high economic volatility, the institution of public sector employment held and was able to protect workers against some of the well-being consequences of rising insecurity. In estimating the relationship between subjective well-being and economic insecurity advanced econometric issues arise. The results show that when selection bias is corrected for, any statistically significant relationship between job insecurity and job satisfaction disappears for public sector workers. Additionally, in order to correct for endogeneity bias the simultaneous equations model for job satisfaction and job insecurity is estimated by Limited Information and Full Information Methods. The results from two different estimators classified as Limited Information Methods support the general findings of this research. Moreover, the magnitude of the endogeneity-corrected estimates are twice as large as those not corrected for endogeneity bias which is similarly found in Geishecker (2010, 2012). As part of the analysis into the effect of economic insecurity on subjective well-being, the effects of other socioeconomic variables and work-related variables are examined for public and private sector workers in Ireland.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report a method of growing site controlled InGaN multiple quantum discs (QDs) at uniform wafer scale on coalescence free ultra-high density (>80%) nanorod templates by metal organic chemical vapour deposition (MOCVD). The dislocation and coalescence free nature of the GaN space filling nanorod arrays eliminates the well-known emission problems seen in InGaN based visible light sources that these types of crystallographic defects cause. Correlative scanning transmission electron microscopy (STEM), energy-dispersive X-ray (EDX) mapping and cathodoluminescence (CL) hyperspectral imaging illustrates the controlled site selection of the red, yellow and green (RYG) emission at these nano tips. This article reveals that the nanorod tips' broad emission in the RYG visible range is in fact achieved by manipulating the InGaN QD's confinement dimensions, rather than significantly increasing the In%. This article details the easily controlled method of manipulating the QDs dimensions producing high crystal quality InGaN without complicated growth conditions needed for strain relaxation and alloy compositional changes seen for bulk planar GaN templates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As a device, the laser is an elegant conglomerate of elementary physical theories and state-of-the-art techniques ranging from quantum mechanics, thermal and statistical physics, material growth and non-linear mathematics. The laser has been a commercial success in medicine and telecommunication while driving the development of highly optimised devices specifically designed for a plethora of uses. Due to their low-cost and large-scale predictability many aspects of modern life would not function without the lasers. However, the laser is also a window into a system that is strongly emulated by non-linear mathematical systems and are an exceptional apparatus in the development of non-linear dynamics and is often used in the teaching of non-trivial mathematics. While single-mode semiconductor lasers have been well studied, a unified comparison of single and two-mode lasers is still needed to extend the knowledge of semiconductor lasers, as well as testing the limits of current model. Secondly, this work aims to utilise the optically injected semiconductor laser as a tool so study non-linear phenomena in other fields of study, namely ’Rogue waves’ that have been previously witnessed in oceanography and are suspected as having non-linear origins. The first half of this thesis includes a reliable and fast technique to categorise the dynamical state of optically injected two mode and single mode lasers. Analysis of the experimentally obtained time-traces revealed regions of various dynamics and allowed the automatic identification of their respective stability. The impact of this method is also extended to the detection regions containing bi-stabilities. The second half of the thesis presents an investigation into the origins of Rogue Waves in single mode lasers. After confirming their existence in single mode lasers, their distribution in time and sudden appearance in the time-series is studied to justify their name. An examination is also performed into the existence of paths that make Rogue Waves possible and the impact of noise on their distribution is also studied.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The dependence of the resistivity with changing diameter of heavily-doped self-seeded germanium nanowires was studied for the diameter range 40 to 11 nm. The experimental data reveal an initial strong reduction of the resistivity with diameter decrease. At about 20 nm a region of slowly varying resistivity emerges with a peak feature around 14 nm. For diameters above 20 nm, nanowires were found to be describable by classical means. For smaller diameters a quantum-based approach was required where we employed the 1D Kubo–Greenwood framework and also revealed the dominant charge carriers to be heavy holes. For both regimes the theoretical results and experimental data agree qualitatively well assuming a spatial spreading of the free holes towards the nanowire centre upon diameter reduction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Strain-free epitaxial quantum dots (QDs) are fabricated by a combination of Al local droplet etching (LDE) of nanoholes in AlGaAs surfaces and subsequent hole filling with GaAs. The whole process is performed in a conventional molecular beam epitaxy (MBE) chamber. Autocorrelation measurements establish single-photon emission from LDE QDs with a very small correlation function g (2)(0)≃ 0.01 of the exciton emission. Here, we focus on the influence of the initial hole depth on the QD optical properties with the goal to create deep holes suited for filling with more complex nanostructures like quantum dot molecules (QDM). The depth of droplet etched nanoholes is controlled by the droplet material coverage and the process temperature, where a higher coverage or temperature yields deeper holes. The requirements of high quantum dot uniformity and narrow luminescence linewidth, which are often found in applications, set limits to the process temperature. At high temperatures, the hole depths become inhomogeneous and the linewidth rapidly increases beyond 640 °C. With the present process technique, we identify an upper limit of 40-nm hole depth if the linewidth has to remain below 100 μeV. Furthermore, we study the exciton fine-structure splitting which is increased from 4.6 μeV in 15-nm-deep to 7.9 μeV in 35-nm-deep holes. As an example for the functionalization of deep nanoholes, self-aligned vertically stacked GaAs QD pairs are fabricated by filling of holes with 35 nm depth. Exciton peaks from stacked dots show linewidths below 100 μeV which is close to that from single QDs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tunable tensile-strained germanium (epsilon-Ge) thin films on GaAs and heterogeneously integrated on silicon (Si) have been demonstrated using graded III-V buffer architectures grown by molecular beam epitaxy (MBE). epsilon-Ge epilayers with tunable strain from 0% to 1.95% on GaAs and 0% to 1.11% on Si were realized utilizing MBE. The detailed structural, morphological, band alignment and optical properties of these highly tensile-strained Ge materials were characterized to establish a pathway for wavelength-tunable laser emission from 1.55 μm to 2.1 μm. High-resolution X-ray analysis confirmed pseudomorphic epsilon-Ge epitaxy in which the amount of strain varied linearly as a function of indium alloy composition in the InxGa1-xAs buffer. Cross-sectional transmission electron microscopic analysis demonstrated a sharp heterointerface between the epsilon-Ge and the InxGa1-xAs layer and confirmed the strain state of the epsilon-Ge epilayer. Lowtemperature micro-photoluminescence measurements confirmed both direct and indirect bandgap radiative recombination between the Γ and L valleys of Ge to the light-hole valence band, with L-lh bandgaps of 0.68 eV and 0.65 eV demonstrated for the 0.82% and 1.11% epsilon-Ge on Si, respectively. The highly epsilon-Ge exhibited a direct bandgap, and wavelength-tunable emission was observed for all samples on both GaAs and Si. Successful heterogeneous integration of tunable epsilon-Ge quantum wells on Si paves the way for the implementation of monolithic heterogeneous devices on Si.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Semiconductor lasers have the potential to address a number of critical applications in advanced telecommunications and signal processing. These include applications that require pulsed output that can be obtained from self-pulsing and mode-locked states of two-section devices with saturable absorption. Many modern applications place stringent performance requirements on the laser source, and a thorough understanding of the physical mechanisms underlying these pulsed modes of operation is therefore highly desirable. In this thesis, we present experimental measurements and numerical simulations of a variety of self-pulsation phenomena in two-section semiconductor lasers with saturable absorption. Our theoretical and numerical results will be based on rate equations for the field intensities and the carrier densities in the two sections of the device, and we establish typical parameter ranges and assess the level of agreement with experiment that can be expected from our models. For each of the physical examples that we consider, our model parameters are consistent with the physical net gain and absorption of the studied devices. Following our introductory chapter, the first system that we consider is a two-section Fabry-Pérot laser. This example serves to introduce our method for obtaining model parameters from the measured material dispersion, and it also allows us to present a detailed discussion of the bifurcation structure that governs the appearance of selfpulsations in two-section devices. In the following two chapters, we present two distinct examples of experimental measurements from dual-mode two-section devices. In each case we have found that single mode self-pulsations evolve into complex coupled dualmode states following a characteristic series of bifurcations. We present optical and mode resolved power spectra as well as a series of characteristic intensity time traces illustrating this progression for each example. Using the results from our study of a twosection Fabry-Pérot device as a guide, we find physically appropriate model parameters that provide qualitative agreement with our experimental results. We highlight the role played by material dispersion and the underlying single mode self-pulsing orbits in determining the observed dynamics, and we use numerical continuation methods to provide a global picture of the governing bifurcation structure. In our concluding chapter we summarise our work, and we discuss how the presented results can inform the development of optimised mode-locked lasers for performance applications in integrated optics.