3 resultados para Daytime Sleepiness

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A newly developed framework for quantifying aerosol particle diversity and mixing state based on information-theoretic entropy is applied for the first time to single particle mass spectrometry field data. Single particle mass fraction estimates for black carbon, organic aerosol, ammonium, nitrate and sulfate, derived using single particle mass spectrometer, aerosol mass spectrometer and multi-angle absorption photometer measurements are used to calculate single particle species diversity (Di). The average single particle species diversity (Dα) is then related to the species diversity of the bulk population (Dγ) to derive a mixing state index value (χ) at hourly resolution. The mixing state index is a single parameter representation of how internally/externally mixed a particle population is at a given time. The index describes a continuum, with values of 0 and 100% representing fully external and internal mixing, respectively. This framework was applied to data collected as part of the MEGAPOLI winter campaign in Paris, France, 2010. Di values are low (∼ 2) for fresh traffic and wood-burning particles that contain high mass fractions of black carbon and organic aerosol but low mass fractions of inorganic ions. Conversely, Di values are higher (∼ 4) for aged carbonaceous particles containing similar mass fractions of black carbon, organic aerosol, ammonium, nitrate and sulfate. Aerosol in Paris is estimated to be 59% internally mixed in the size range 150-1067 nm, and mixing state is dependent both upon time of day and air mass origin. Daytime primary emissions associated with vehicular traffic and wood-burning result in low χ values, while enhanced condensation of ammonium nitrate on existing particles at night leads to higher χ values. Advection of particles from continental Europe containing ammonium, nitrate and sulfate leads to increases in Dα, Dγ and χ. The mixing state index represents a useful metric by which to compare and contrast ambient particle mixing state at other locations globally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reliable and fine resolution estimates of surface net-radiation are required for estimating latent and sensible heat fluxes between the land surface and the atmosphere. However, currently, fine resolution estimates of net-radiation are not available and consequently it is challenging to develop multi-year estimates of evapotranspiration at scales that can capture land surface heterogeneity and are relevant for policy and decision-making. We developed and evaluated a global net-radiation product at 5 km and 8-day resolution by combining mutually consistent atmosphere and land data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra. Comparison with net-radiation measurements from 154 globally distributed sites (414 site-years) from the FLUXNET and Surface Radiation budget network (SURFRAD) showed that the net-radiation product agreed well with measurements across seasons and climate types in the extratropics (Wilmott’s index ranged from 0.74 for boreal to 0.63 for Mediterranean sites). Mean absolute deviation between the MODIS and measured net-radiation ranged from 38.0 ± 1.8 W∙m−2 in boreal to 72.0 ± 4.1 W∙m−2 in the tropical climates. The mean bias was small and constituted only 11%, 0.7%, 8.4%, 4.2%, 13.3%, and 5.4% of the mean absolute error in daytime net-radiation in boreal, Mediterranean, temperate-continental, temperate, semi-arid, and tropical climate, respectively. To assess the accuracy of the broader spatiotemporal patterns, we upscaled error-quantified MODIS net-radiation and compared it with the net-radiation estimates from the coarse spatial (1° × 1°) but high temporal resolution gridded net-radiation product from the Clouds and Earth’s Radiant Energy System (CERES). Our estimates agreed closely with the net-radiation estimates from the CERES. Difference between the two was less than 10 W•m−2 in 94% of the total land area. MODIS net-radiation product will be a valuable resource for the science community studying turbulent fluxes and energy budget at the Earth’s surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction The objectives of this thesis are to: (1) examine how ambulatory blood pressure monitoring (ABPM) refines office blood pressure (BP) measurement; (2) determine if absolute ambulatory BP or dipping status is better associated with target organ damage (TOD); (3) explore the association of isolated nocturnal hypertension (INH) with TOD; and (4) investigate the association of night-time BP with ultrasound markers of cardiovascular damage. Methods Data from the Mitchelstown Cohort Study was analysed to deliver objectives 1 and 2. Objective 3 was addressed by a systematic review and analysis of data from the Mitchelstown Study. A sample of participants from the Mitchelstown Study underwent an echocardiogram for speckle tracking analysis and carotid ultrasound to achieve objective 4. Results ABPM reclassifies hypertension status in approximately a quarter of individuals, with white coat and masked hypertension prevalence rates of 11% and 13% respectively. Night-time systolic BP is better associated with TOD than daytime systolic BP and dipping level. In multi-variable models the odds ratio (OR) for LVH was 1.4 (95% CI 1.1 -1.8) and for albumin:creatinine ratio ≥ 1.1 mg/mmol was 1.5 (95% CI 1.2 – 1.8) for each 10 mmHg rise in night-time systolic BP. The evidence for the association of INH with TOD is inconclusive. Night-time systolic BP is significantly associated with global longitudinal strain (GLS) (beta coefficient 0.85 for every 10 mmHg rise, 95% CI 0.3 – 1.4) and carotid plaques (OR 1.9 for every 10 mmHg rise, 95% CI 1.1 – 3.2) in univariable analysis. The findings persist for GLS in sex and age adjusted models but not in multivariable models. Discussion Hypertension cannot be effectively managed without using ABPM. Night-time systolic BP is better associated with TOD than daytime systolic BP and dipping level, and therefore, may be a better therapeutic target in future studies.