7 resultados para Cryptography algorithms

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Along with the growing demand for cryptosystems in systems ranging from large servers to mobile devices, suitable cryptogrophic protocols for use under certain constraints are becoming more and more important. Constraints such as calculation time, area, efficiency and security, must be considered by the designer. Elliptic curves, since their introduction to public key cryptography in 1985 have challenged established public key and signature generation schemes such as RSA, offering more security per bit. Amongst Elliptic curve based systems, pairing based cryptographies are thoroughly researched and can be used in many public key protocols such as identity based schemes. For hardware implementions of pairing based protocols, all components which calculate operations over Elliptic curves can be considered. Designers of the pairing algorithms must choose calculation blocks and arrange the basic operations carefully so that the implementation can meet the constraints of time and hardware resource area. This thesis deals with different hardware architectures to accelerate the pairing based cryptosystems in the field of characteristic two. Using different top-level architectures the hardware efficiency of operations that run at different times is first considered in this thesis. Security is another important aspect of pairing based cryptography to be considered in practically Side Channel Analysis (SCA) attacks. The naively implemented hardware accelerators for pairing based cryptographies can be vulnerable when taking the physical analysis attacks into consideration. This thesis considered the weaknesses in pairing based public key cryptography and addresses the particular calculations in the systems that are insecure. In this case, countermeasures should be applied to protect the weak link of the implementation to improve and perfect the pairing based algorithms. Some important rules that the designers must obey to improve the security of the cryptosystems are proposed. According to these rules, three countermeasures that protect the pairing based cryptosystems against SCA attacks are applied. The implementations of the countermeasures are presented and their performances are investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the rapid growth of the Internet and digital communications, the volume of sensitive electronic transactions being transferred and stored over and on insecure media has increased dramatically in recent years. The growing demand for cryptographic systems to secure this data, across a multitude of platforms, ranging from large servers to small mobile devices and smart cards, has necessitated research into low cost, flexible and secure solutions. As constraints on architectures such as area, speed and power become key factors in choosing a cryptosystem, methods for speeding up the development and evaluation process are necessary. This thesis investigates flexible hardware architectures for the main components of a cryptographic system. Dedicated hardware accelerators can provide significant performance improvements when compared to implementations on general purpose processors. Each of the designs proposed are analysed in terms of speed, area, power, energy and efficiency. Field Programmable Gate Arrays (FPGAs) are chosen as the development platform due to their fast development time and reconfigurable nature. Firstly, a reconfigurable architecture for performing elliptic curve point scalar multiplication on an FPGA is presented. Elliptic curve cryptography is one such method to secure data, offering similar security levels to traditional systems, such as RSA, but with smaller key sizes, translating into lower memory and bandwidth requirements. The architecture is implemented using different underlying algorithms and coordinates for dedicated Double-and-Add algorithms, twisted Edwards algorithms and SPA secure algorithms, and its power consumption and energy on an FPGA measured. Hardware implementation results for these new algorithms are compared against their software counterparts and the best choices for minimum area-time and area-energy circuits are then identified and examined for larger key and field sizes. Secondly, implementation methods for another component of a cryptographic system, namely hash functions, developed in the recently concluded SHA-3 hash competition are presented. Various designs from the three rounds of the NIST run competition are implemented on FPGA along with an interface to allow fair comparison of the different hash functions when operating in a standardised and constrained environment. Different methods of implementation for the designs and their subsequent performance is examined in terms of throughput, area and energy costs using various constraint metrics. Comparing many different implementation methods and algorithms is nontrivial. Another aim of this thesis is the development of generic interfaces used both to reduce implementation and test time and also to enable fair baseline comparisons of different algorithms when operating in a standardised and constrained environment. Finally, a hardware-software co-design cryptographic architecture is presented. This architecture is capable of supporting multiple types of cryptographic algorithms and is described through an application for performing public key cryptography, namely the Elliptic Curve Digital Signature Algorithm (ECDSA). This architecture makes use of the elliptic curve architecture and the hash functions described previously. These components, along with a random number generator, provide hardware acceleration for a Microblaze based cryptographic system. The trade-off in terms of performance for flexibility is discussed using dedicated software, and hardware-software co-design implementations of the elliptic curve point scalar multiplication block. Results are then presented in terms of the overall cryptographic system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Case-Based Reasoning (CBR) uses past experiences to solve new problems. The quality of the past experiences, which are stored as cases in a case base, is a big factor in the performance of a CBR system. The system's competence may be improved by adding problems to the case base after they have been solved and their solutions verified to be correct. However, from time to time, the case base may have to be refined to reduce redundancy and to get rid of any noisy cases that may have been introduced. Many case base maintenance algorithms have been developed to delete noisy and redundant cases. However, different algorithms work well in different situations and it may be difficult for a knowledge engineer to know which one is the best to use for a particular case base. In this thesis, we investigate ways to combine algorithms to produce better deletion decisions than the decisions made by individual algorithms, and ways to choose which algorithm is best for a given case base at a given time. We analyse five of the most commonly-used maintenance algorithms in detail and show how the different algorithms perform better on different datasets. This motivates us to develop a new approach: maintenance by a committee of experts (MACE). MACE allows us to combine maintenance algorithms to produce a composite algorithm which exploits the merits of each of the algorithms that it contains. By combining different algorithms in different ways we can also define algorithms that have different trade-offs between accuracy and deletion. While MACE allows us to define an infinite number of new composite algorithms, we still face the problem of choosing which algorithm to use. To make this choice, we need to be able to identify properties of a case base that are predictive of which maintenance algorithm is best. We examine a number of measures of dataset complexity for this purpose. These provide a numerical way to describe a case base at a given time. We use the numerical description to develop a meta-case-based classification system. This system uses previous experience about which maintenance algorithm was best to use for other case bases to predict which algorithm to use for a new case base. Finally, we give the knowledge engineer more control over the deletion process by creating incremental versions of the maintenance algorithms. These incremental algorithms suggest one case at a time for deletion rather than a group of cases, which allows the knowledge engineer to decide whether or not each case in turn should be deleted or kept. We also develop incremental versions of the complexity measures, allowing us to create an incremental version of our meta-case-based classification system. Since the case base changes after each deletion, the best algorithm to use may also change. The incremental system allows us to choose which algorithm is the best to use at each point in the deletion process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electroencephalogram (EEG) is a medical technology that is used in the monitoring of the brain and in the diagnosis of many neurological illnesses. Although coarse in its precision, the EEG is a non-invasive tool that requires minimal set-up times, and is suitably unobtrusive and mobile to allow continuous monitoring of the patient, either in clinical or domestic environments. Consequently, the EEG is the current tool-of-choice with which to continuously monitor the brain where temporal resolution, ease-of- use and mobility are important. Traditionally, EEG data are examined by a trained clinician who identifies neurological events of interest. However, recent advances in signal processing and machine learning techniques have allowed the automated detection of neurological events for many medical applications. In doing so, the burden of work on the clinician has been significantly reduced, improving the response time to illness, and allowing the relevant medical treatment to be administered within minutes rather than hours. However, as typical EEG signals are of the order of microvolts (μV ), contamination by signals arising from sources other than the brain is frequent. These extra-cerebral sources, known as artefacts, can significantly distort the EEG signal, making its interpretation difficult, and can dramatically disimprove automatic neurological event detection classification performance. This thesis therefore, contributes to the further improvement of auto- mated neurological event detection systems, by identifying some of the major obstacles in deploying these EEG systems in ambulatory and clinical environments so that the EEG technologies can emerge from the laboratory towards real-world settings, where they can have a real-impact on the lives of patients. In this context, the thesis tackles three major problems in EEG monitoring, namely: (i) the problem of head-movement artefacts in ambulatory EEG, (ii) the high numbers of false detections in state-of-the-art, automated, epileptiform activity detection systems and (iii) false detections in state-of-the-art, automated neonatal seizure detection systems. To accomplish this, the thesis employs a wide range of statistical, signal processing and machine learning techniques drawn from mathematics, engineering and computer science. The first body of work outlined in this thesis proposes a system to automatically detect head-movement artefacts in ambulatory EEG and utilises supervised machine learning classifiers to do so. The resulting head-movement artefact detection system is the first of its kind and offers accurate detection of head-movement artefacts in ambulatory EEG. Subsequently, addtional physiological signals, in the form of gyroscopes, are used to detect head-movements and in doing so, bring additional information to the head- movement artefact detection task. A framework for combining EEG and gyroscope signals is then developed, offering improved head-movement arte- fact detection. The artefact detection methods developed for ambulatory EEG are subsequently adapted for use in an automated epileptiform activity detection system. Information from support vector machines classifiers used to detect epileptiform activity is fused with information from artefact-specific detection classifiers in order to significantly reduce the number of false detections in the epileptiform activity detection system. By this means, epileptiform activity detection which compares favourably with other state-of-the-art systems is achieved. Finally, the problem of false detections in automated neonatal seizure detection is approached in an alternative manner; blind source separation techniques, complimented with information from additional physiological signals are used to remove respiration artefact from the EEG. In utilising these methods, some encouraging advances have been made in detecting and removing respiration artefacts from the neonatal EEG, and in doing so, the performance of the underlying diagnostic technology is improved, bringing its deployment in the real-world, clinical domain one step closer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the field of embedded systems design, coprocessors play an important role as a component to increase performance. Many embedded systems are built around a small General Purpose Processor (GPP). If the GPP cannot meet the performance requirements for a certain operation, a coprocessor can be included in the design. The GPP can then offload the computationally intensive operation to the coprocessor; thus increasing the performance of the overall system. A common application of coprocessors is the acceleration of cryptographic algorithms. The work presented in this thesis discusses coprocessor architectures for various cryptographic algorithms that are found in many cryptographic protocols. Their performance is then analysed on a Field Programmable Gate Array (FPGA) platform. Firstly, the acceleration of Elliptic Curve Cryptography (ECC) algorithms is investigated through the use of instruction set extension of a GPP. The performance of these algorithms in a full hardware implementation is then investigated, and an architecture for the acceleration the ECC based digital signature algorithm is developed. Hash functions are also an important component of a cryptographic system. The FPGA implementation of recent hash function designs from the SHA-3 competition are discussed and a fair comparison methodology for hash functions presented. Many cryptographic protocols involve the generation of random data, for keys or nonces. This requires a True Random Number Generator (TRNG) to be present in the system. Various TRNG designs are discussed and a secure implementation, including post-processing and failure detection, is introduced. Finally, a coprocessor for the acceleration of operations at the protocol level will be discussed, where, a novel aspect of the design is the secure method in which private-key data is handled

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditionally, attacks on cryptographic algorithms looked for mathematical weaknesses in the underlying structure of a cipher. Side-channel attacks, however, look to extract secret key information based on the leakage from the device on which the cipher is implemented, be it smart-card, microprocessor, dedicated hardware or personal computer. Attacks based on the power consumption, electromagnetic emanations and execution time have all been practically demonstrated on a range of devices to reveal partial secret-key information from which the full key can be reconstructed. The focus of this thesis is power analysis, more specifically a class of attacks known as profiling attacks. These attacks assume a potential attacker has access to, or can control, an identical device to that which is under attack, which allows him to profile the power consumption of operations or data flow during encryption. This assumes a stronger adversary than traditional non-profiling attacks such as differential or correlation power analysis, however the ability to model a device allows templates to be used post-profiling to extract key information from many different target devices using the power consumption of very few encryptions. This allows an adversary to overcome protocols intended to prevent secret key recovery by restricting the number of available traces. In this thesis a detailed investigation of template attacks is conducted, along with how the selection of various attack parameters practically affect the efficiency of the secret key recovery, as well as examining the underlying assumption of profiling attacks in that the power consumption of one device can be used to extract secret keys from another. Trace only attacks, where the corresponding plaintext or ciphertext data is unavailable, are then investigated against both symmetric and asymmetric algorithms with the goal of key recovery from a single trace. This allows an adversary to bypass many of the currently proposed countermeasures, particularly in the asymmetric domain. An investigation into machine-learning methods for side-channel analysis as an alternative to template or stochastic methods is also conducted, with support vector machines, logistic regression and neural networks investigated from a side-channel viewpoint. Both binary and multi-class classification attack scenarios are examined in order to explore the relative strengths of each algorithm. Finally these machine-learning based alternatives are empirically compared with template attacks, with their respective merits examined with regards to attack efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, extensive experiments are firstly conducted to characterize the performance of using the emerging IEEE 802.15.4-2011 ultra wideband (UWB) for indoor localization, and the results demonstrate the accuracy and precision of using time of arrival measurements for ranging applications. A multipath propagation controlling technique is synthesized which considers the relationship between transmit power, transmission range and signal-to-noise ratio. The methodology includes a novel bilateral transmitter output power control algorithm which is demonstrated to be able to stabilize the multipath channel, and enable sub 5cm instant ranging accuracy in line of sight conditions. A fully-coupled architecture is proposed for the localization system using a combination of IEEE 802.15.4-2011 UWB and inertial sensors. This architecture not only implements the position estimation of the object by fusing the UWB and inertial measurements, but enables the nodes in the localization network to mutually share positional and other useful information via the UWB channel. The hybrid system has been demonstrated to be capable of simultaneous local-positioning and remote-tracking of the mobile object. Three fusion algorithms for relative position estimation are proposed, including internal navigation system (INS), INS with UWB ranging correction, and orientation plus ranging. Experimental results show that the INS with UWB correction algorithm achieves an average position accuracy of 0.1883m, and gets 83% and 62% improvements on the accuracy of the INS (1.0994m) and the existing extended Kalman filter tracking algorithm (0.5m), respectively.