6 resultados para Credit constraint
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Constraint programming has emerged as a successful paradigm for modelling combinatorial problems arising from practical situations. In many of those situations, we are not provided with an immutable set of constraints. Instead, a user will modify his requirements, in an interactive fashion, until he is satisfied with a solution. Examples of such applications include, amongst others, model-based diagnosis, expert systems, product configurators. The system he interacts with must be able to assist him by showing the consequences of his requirements. Explanations are the ideal tool for providing this assistance. However, existing notions of explanations fail to provide sufficient information. We define new forms of explanations that aim to be more informative. Even if explanation generation is a very hard task, in the applications we consider, we must manage to provide a satisfactory level of interactivity and, therefore, we cannot afford long computational times. We introduce the concept of representative sets of relaxations, a compact set of relaxations that shows the user at least one way to satisfy each of his requirements and at least one way to relax them, and present an algorithm that efficiently computes such sets. We introduce the concept of most soluble relaxations, maximising the number of products they allow. We present algorithms to compute such relaxations in times compatible with interactivity, achieving this by indifferently making use of different types of compiled representations. We propose to generalise the concept of prime implicates to constraint problems with the concept of domain consequences, and suggest to generate them as a compilation strategy. This sets a new approach in compilation, and allows to address explanation-related queries in an efficient way. We define ordered automata to compactly represent large sets of domain consequences, in an orthogonal way from existing compilation techniques that represent large sets of solutions.
Resumo:
Much work has been done on learning from failure in search to boost solving of combinatorial problems, such as clause-learning and clause-weighting in boolean satisfiability (SAT), nogood and explanation-based learning, and constraint weighting in constraint satisfaction problems (CSPs). Many of the top solvers in SAT use clause learning to good effect. A similar approach (nogood learning) has not had as large an impact in CSPs. Constraint weighting is a less fine-grained approach where the information learnt gives an approximation as to which variables may be the sources of greatest contention. In this work we present two methods for learning from search using restarts, in order to identify these critical variables prior to solving. Both methods are based on the conflict-directed heuristic (weighted-degree heuristic) introduced by Boussemart et al. and are aimed at producing a better-informed version of the heuristic by gathering information through restarting and probing of the search space prior to solving, while minimizing the overhead of these restarts. We further examine the impact of different sampling strategies and different measurements of contention, and assess different restarting strategies for the heuristic. Finally, two applications for constraint weighting are considered in detail: dynamic constraint satisfaction problems and unary resource scheduling problems.
Resumo:
This thesis explores the relationship between organisational effectiveness and member participation in Irish credit unions. It is hypothesised that a positive relationship exists between both variables. Co-operative literature suggests that co-operatives require the involvement of the members in identifying and meeting their own needs in order to be effective organisations. Previous research studies into the issue across a variety of organisational types have shown mixed results. Related research into credit unions is sparse. The primary research undertaken is both quantitative and qualitative in approach. Organisational effectiveness is examined in both quantitative and qualitative terms. Member participation, being an organisational process, is examined in qualitative terms. Indicators of organisational effectiveness, specific to credit unions, are drawn up and form a framework through which effectiveness is examined. A typology and indicators of member participation are also developed and form a framework through which member participation is examined. The case study method is used primarily, to examine organisational effectiveness and member participation in Irish credit unions. A case study of a theoretical credit union, which is based on a composite of good practice in credit unions in Ireland and internationally, is also drawn up to develop the analysis further. The case studies allow an analysis of both organisational effectiveness and member participation, as well as an exploration of the relationship between the two. The findings support the hypothesis that there is a direct relationship between the two variables. In order to be effective, credit unions must involve their members in identifying their needs and in designing services to meet these needs. At present, they do not do this to any large extent. In order to continue to meet the needs of their members and to compete in the financial services sector, credit unions will need to find ways of involving members, drawing on good practice in other co-operatives. This will be critical to their continued success.
Resumo:
In rural Ethiopia, among other things, lack of adequate financial service is considered as the basic problem to alleviate rural poverty and to solve the problem of food insecurity. Commercial banks are restricted to urban centres. Providing rural financial service through RUSACCO to the poor has been proposed as a tool for economic development and for achieving food security. Evidence from research in this regard has been so far scanty, especially in rural Ethiopia. The aims of this study are to analyze the determinants of membership, to identify socioeconomic and demographic factors that influence members’ participation in RUSACCOs and to quantify the impact of RUSACCOs on member households’ food security. The study was conducted in two purposely selected woredas in the Amhara region one from food insecure (Lay Gayint woreda) and the other from food secure (Dejen woreda). Six RUSACCOs were selected randomly from these two woredas. Both qualitative and quantitative data were collected. Key informant interviews, focus group discussions and survey techniques were used to collect primary data. Collected data was then analyzed using mixed methods depending on the nature of data. For quantitative data analysis appropriate statistical models were used. The study result reveals that the number of members in each RUSACCO is very small. However, the majority of non-member respondents are willing to join RUSACCO. Lack of information about the benefits of RUSACCO membership is the main problem why many rural poor do not join RUSACCOs. Members participate in different aspects of the cooperatives, starting from attending general assembly up to board membership. They also participate actively in saving and borrowing activities of RUSACCO. The majority of the respondents believe the RUSACCO is a vital instrument in combating food insecurity. The empirical findings indicate that gender, marital status, occupation, educational level, participation in local leadership and participation in other income generation means determine the decision of rural poor to join a RUSACCO or not. The amount of saving is determined by household head occupation, farming experience and income level. While age of household head, primary occupation, farming experience, date of membership, annual total consumption expenditure, amount of saving and participation in other income generation activities influence members’ amount of borrowing by RUSACCO members. Finally, the study confirms that RUSACCO participation improves household food security. RUSACCO membership has made positive impact on household total consumption expenditure and food expenditure.
Resumo:
This paper introduces a screw theory based method termed constraint and position identification (CPI) approach to synthesize decoupled spatial translational compliant parallel manipulators (XYZ CPMs) with consideration of actuation isolation. The proposed approach is based on a systematic arrangement of rigid stages and compliant modules in a three-legged XYZ CPM system using the constraint spaces and the position spaces of the compliant modules. The constraint spaces and the position spaces are firstly derived based on the screw theory instead of using the rigid-body mechanism design experience. Additionally, the constraint spaces are classified into different constraint combinations, with typical position spaces depicted via geometric entities. Furthermore, the systematic synthesis process based on the constraint combinations and the geometric entities is demonstrated via several examples. Finally, several novel decoupled XYZ CPMs with monolithic configurations are created and verified by finite elements analysis. The present CPI approach enables experts and beginners to synthesize a variety of decoupled XYZ CPMs with consideration of actuation isolation by selecting an appropriate constraint and an optimal position for each of the compliant modules according to a specific application.
Resumo:
Numerous works have been conducted on modelling basic compliant elements such as wire beams, and closed-form analytical models of most basic compliant elements have been well developed. However, the modelling of complex compliant mechanisms is still a challenging work. This paper proposes a constraint-force-based (CFB) modelling approach to model compliant mechanisms with a particular emphasis on modelling complex compliant mechanisms. The proposed CFB modelling approach can be regarded as an improved free-body- diagram (FBD) based modelling approach, and can be extended to a development of the screw-theory-based design approach. A compliant mechanism can be decomposed into rigid stages and compliant modules. A compliant module can offer elastic forces due to its deformation. Such elastic forces are regarded as variable constraint forces in the CFB modelling approach. Additionally, the CFB modelling approach defines external forces applied on a compliant mechanism as constant constraint forces. If a compliant mechanism is at static equilibrium, all the rigid stages are also at static equilibrium under the influence of the variable and constant constraint forces. Therefore, the constraint force equilibrium equations for all the rigid stages can be obtained, and the analytical model of the compliant mechanism can be derived based on the constraint force equilibrium equations. The CFB modelling approach can model a compliant mechanism linearly and nonlinearly, can obtain displacements of any points of the rigid stages, and allows external forces to be exerted on any positions of the rigid stages. Compared with the FBD based modelling approach, the CFB modelling approach does not need to identify the possible deformed configuration of a complex compliant mechanism to obtain the geometric compatibility conditions and the force equilibrium equations. Additionally, the mathematical expressions in the CFB approach have an easily understood physical meaning. Using the CFB modelling approach, the variable constraint forces of three compliant modules, a wire beam, a four-beam compliant module and an eight-beam compliant module, have been derived in this paper. Based on these variable constraint forces, the linear and non-linear models of a decoupled XYZ compliant parallel mechanism are derived, and verified by FEA simulations and experimental tests.