3 resultados para Capital and lending channel

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work by employing numerical three-dimensional simulations we study the electrical performance and short channel behavior of several multi-gate transistors based on advanced SOI technology. These include FinFETs, triple-gate and gate-all-around nanowire FETs with different channel material, namely Si, Ge, and III-V compound semiconductors, all most promising candidates for future nanoscale CMOS technologies. Also, a new type of transistor called “junctionless nanowire transistor” is presented and extensive simulations are carried out to study its electrical characteristics and compare with the conventional inversion- and accumulation-mode transistors. We study the influence of device properties such as different channel material and orientation, dimensions, and doping concentration as well as quantum effects on the performance of multi-gate SOI transistors. For the modeled n-channel nanowire devices we found that at very small cross sections the nanowires with silicon channel are more immune to short channel effects. Interestingly, the mobility of the channel material is not as significant in determining the device performance in ultrashort channels as other material properties such as the dielectric constant and the effective mass. Better electrostatic control is achieved in materials with smaller dielectric constant and smaller source-to-drain tunneling currents are observed in channels with higher transport effective mass. This explains our results on Si-based devices. In addition to using the commercial TCAD software (Silvaco and Synopsys TCAD), we have developed a three-dimensional Schrödinger-Poisson solver based on the non-equilibrium Green’s functions formalism and in the framework of effective mass approximation. This allows studying the influence of quantum effects on electrical performance of ultra-scaled devices. We have implemented different mode-space methodologies in our 3D quantum-mechanical simulator and moreover introduced a new method to deal with discontinuities in the device structures which is much faster than the coupled-mode-space approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation applies a variety of quantitative methods to electricity and carbon market data, utility company accounts data, capital and operating costs to analyse some of the challenges associated with investment in energy assets. In particular, three distinct research topics are analysed within this general theme: the efficiency of interconnector trading, the optimal sizing of intermittent wind facilities and the impact of carbon pricing on the cost of capital for investors are researched in successive sections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of a biofuel cell takes inspiration from the natural capability of biological systems to catalyse the conversion of organic matter with a subsequent release of electrical energy. Enzymatic biofuel cells are intended to mimic the processes occurring in nature in a more controlled and efficient manner. Traditional fuel cells rely on the use of toxic catalysts and are often not easily miniaturizable making them unsuitable as implantable power sources. Biofuel cells however use highly selective protein catalysts and renewable fuels. As energy consumption becomes a global issue, they emerge as important tools for energy generation. The microfluidic platforms developed are intended to maximize the amount of electrical energy extracted from renewable fuels which are naturally abundant in the environment and in biological fluids. Combining microfabrication processes, chemical modification and biological surface patterning these devices are promising candidates for micro-power sources for future life science and electronic applications. This thesis considered four main aspects of a biofuel cell research. Firstly, concept of a miniature compartmentalized enzymatic biofuel cell utilizing simple fuels and operating in static conditions is verified and proves the feasibility of enzyme catalysis in energy conversion processes. Secondly, electrode and microfluidic channel study was performed through theoretical investigations of the flow and catalytic reactions which also improved understanding of the enzyme kinetics in the cell. Next, microfluidic devices were fabricated from cost-effective and disposable polymer materials, using the state-of-the-art micro-processing technologies. Integration of the individual components is difficult and multiple techniques to overcome these problems have been investigated. Electrochemical characterization of gold electrodes modified with Nanoporous Gold Structures is also performed. Finally, two strategies for enzyme patterning and encapsulation are discussed. Several protein catalysts have been effectively immobilized on the surface of commercial and microfabricated electrodes by electrochemically assisted deposition in sol-gel and poly-(o-phenylenediamine) polymer matrices and characterised with confirmed catalytic activity.