3 resultados para CO ALLOY CATALYSTS

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of non-equilibrium group IV nanoscale alloys is critical to achieving new functionalities, such as the formation of a direct bandgap in a conventional indirect bandgap elemental semiconductor. Here, we describe the fabrication of uniform diameter, direct bandgap Ge1-xSnx alloy nanowires, with a Sn incorporation up to 9.2[thinsp]at.%, far in excess of the equilibrium solubility of Sn in bulk Ge, through a conventional catalytic bottom-up growth paradigm using noble metal and metal alloy catalysts. Metal alloy catalysts permitted a greater inclusion of Sn in Ge nanowires compared with conventional Au catalysts, when used during vapour-liquid-solid growth. The addition of an annealing step close to the Ge-Sn eutectic temperature (230[thinsp][deg]C) during cool-down, further facilitated the excessive dissolution of Sn in the nanowires. Sn was distributed throughout the Ge nanowire lattice with no metallic Sn segregation or precipitation at the surface or within the bulk of the nanowires. The non-equilibrium incorporation of Sn into the Ge nanowires can be understood in terms of a kinetic trapping model for impurity incorporation at the triple-phase boundary during growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to tune the structural and chemical properties of colloidal nanoparticles (NPs), make them highly advantageous for studying activity and selectivity dependent catalytic behaviour. Incorporating pre-synthesized colloidal NPs into porous supports materials remains a challenge due to poor wetting and pore permeability. In this report monodisperse, composition controlled AgPd alloy NPs were synthesised and embedded into SBA-15 using supercritical carbon dioxide and hexane. Supercritical fluid impregnation resulted in high metal loading without the requirement for surface pre-treatments. The catalytic activity, reaction profiles and recyclability of the alloy NPs embedded in SBA-15 and immobilised on non-porous SiO2 are evaluated. The NPs incorporated within the SBA-15 porous network showed significantly greater recyclability performance compared to non-porous SiO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We synthesized nanoscale TiO2-RuO2 alloys by atomic layer deposition (ALD) that possess a high work function and are highly conductive. As such, they function as good Schottky contacts to extract photogenerated holes from n-type silicon while simultaneously interfacing with water oxidation catalysts. The ratio of TiO2 to RuO2 can be precisely controlled by the number of ALD cycles for each precursor. Increasing the composition above 16% Ru sets the electronic conductivity and the metal work function. No significant Ohmic loss for hole transport is measured as film thickness increases from 3 to 45 nm for alloy compositions >= 16% Ru. Silicon photoanodes with a 2 nm SiO2 layer that are coated by these alloy Schottky contacts having compositions in the range of 13-46% Ru exhibit average photovoltages of 525 mV, with a maximum photovoltage of 570 mV achieved. Depositing TiO2-RuO2 alloys on nSi sets a high effective work function for the Schottky junction with the semiconductor substrate, thus generating a large photovoltage that is isolated from the properties of an overlying oxygen evolution catalyst or protection layer.