5 resultados para Archaea, operational taxonomic unit

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wind energy is predominantly a nonsynchronous generation source. Large-scale integration of wind generation with existing electricity systems, therefore, presents challenges in maintaining system frequency stability and local voltage stability. Transmission system operators have implemented system operational constraints (SOCs) in order to maintain stability with high wind generation, but imposition of these constraints results in higher operating costs. A mixed integer programming tool was used to simulate generator dispatch in order to assess the impact of various SOCs on generation costs. Interleaved day-ahead scheduling and real-time dispatch models were developed to allow accurate representation of forced outages and wind forecast errors, and were applied to the proposed Irish power system of 2020 with a wind penetration of 32%. Savings of at least 7.8% in generation costs and reductions in wind curtailment of 50% were identified when the most influential SOCs were relaxed. The results also illustrate the need to relax local SOCs together with the system-wide nonsynchronous penetration limit SOC, as savings from increasing the nonsynchronous limit beyond 70% were restricted without relaxation of local SOCs. The methodology and results allow for quantification of the costs of SOCs, allowing the optimal upgrade path for generation and transmission infrastructure to be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper documents the design, implementation and characterisation of a wireless sensor node (GENESI Node v1.0), applicable to long-term structural health monitoring. Presented is a three layer abstraction of the hardware platform; consisting of a Sensor Layer, a Main Layer and a Power Layer. Extended operational lifetime is one of the primary design goals, necessitating the inclusion of supplemental energy sources, energy awareness, and the implementation of optimal components (microcontroller(s), RF transceiver, etc.) to achieve lowest-possible power consumption, whilst ensuring that the functional requirements of the intended application area are satisfied. A novel Smart Power Unit has been developed; including intelligence, ambient available energy harvesting (EH), storage, electrochemical fuel cell integration, and recharging capability, which acts as the Power Layer for the node. The functional node has been prototyped, demonstrated and characterised in a variety of operational modes. It is demonstrable via simulation that, under normal operating conditions within a structural health monitoring application, the node may operate perpetually.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless Inertial Measurement Units (WIMUs) combine motion sensing, processing & communications functionsin a single device. Data gathered using these sensors has the potential to be converted into high quality motion data. By outfitting a subject with multiple WIMUs full motion data can begathered. With a potential cost of ownership several orders of magnitude less than traditional camera based motion capture, WIMU systems have potential to be crucially important in supplementing or replacing traditional motion capture and opening up entirely new application areas and potential markets particularly in the rehabilitative, sports & at-home healthcarespaces. Currently WIMUs are underutilized in these areas. A major barrier to adoption is perceived complexity. Sample rates, sensor types & dynamic sensor ranges may need to be adjusted on multiple axes for each device depending on the scenario. As such we present an advanced WIMU in conjunction with a Smart WIMU system to simplify this aspect with 3 usage modes: Manual, Intelligent and Autonomous. Attendees will be able to compare the 3 different modes and see the effects of good andbad set-ups on the quality of data gathered in real time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contribution of buildings towards total worldwide energy consumption in developed countries is between 20% and 40%. Heating Ventilation and Air Conditioning (HVAC), and more specifically Air Handling Units (AHUs) energy consumption accounts on average for 40% of a typical medical device manufacturing or pharmaceutical facility’s energy consumption. Studies have indicated that 20 – 30% energy savings are achievable by recommissioning HVAC systems, and more specifically AHU operations, to rectify faulty operation. Automated Fault Detection and Diagnosis (AFDD) is a process concerned with potentially partially or fully automating the commissioning process through the detection of faults. An expert system is a knowledge-based system, which employs Artificial Intelligence (AI) methods to replicate the knowledge of a human subject matter expert, in a particular field, such as engineering, medicine, finance and marketing, to name a few. This thesis details the research and development work undertaken in the development and testing of a new AFDD expert system for AHUs which can be installed in minimal set up time on a large cross section of AHU types in a building management system vendor neutral manner. Both simulated and extensive field testing was undertaken against a widely available and industry known expert set of rules known as the Air Handling Unit Performance Assessment Rules (APAR) (and a later more developed version known as APAR_extended) in order to prove its effectiveness. Specifically, in tests against a dataset of 52 simulated faults, this new AFDD expert system identified all 52 derived issues whereas the APAR ruleset identified just 10. In tests using actual field data from 5 operating AHUs in 4 manufacturing facilities, the newly developed AFDD expert system for AHUs was shown to identify four individual fault case categories that the APAR method did not, as well as showing improvements made in the area of fault diagnosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the swamping and timeliness of data in the organizational context, the decision maker’s choice of an appropriate decision alternative in a given situation is defied. In particular, operational actors are facing the challenge to meet business-critical decisions in a short time and at high frequency. The construct of Situation Awareness (SA) has been established in cognitive psychology as a valid basis for understanding the behavior and decision making of human beings in complex and dynamic systems. SA gives decision makers the possibility to make informed, time-critical decisions and thereby improve the performance of the respective business process. This research paper leverages SA as starting point for a design science project for Operational Business Intelligence and Analytics systems and suggests a first version of design principles.