21 resultados para FOOD TECHNOLOGY


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding how dynamic ecological communities respond to anthropogenic drivers of change such as habitat loss and fragmentation, climate change and the introduction of alien species requires that there is a theoretical framework able to predict community dynamics. At present there is a lack of empirical data that can be used to inform and test predictive models, which means that much of our knowledge regarding the response of ecological communities to perturbations is obtained from theoretical analyses and simulations. This thesis is composed of two strands of research: an empirical experiment conducted to inform the scaling of intraspecific and interspecific interaction strengths in a three species food chain and a series of theoretical analyses on the changes to equilibrium biomass abundances following press perturbations. The empirical experiment is a consequence of the difficulties faced when parameterising the intraspecific interaction strengths in a Lotka-Volterra model. A modification of the dynamic index is used alongside the original dynamic index to estimate intraspecific interactions and interspecific interaction strengths in a three species food. The theoretical analyses focused on the effect of press perturbations to focal species on the equilibrium biomass densities of all species in the community; these perturbations allow for the quantification of a species total net effect. It was found that there is a strong and consistent positive relationship between a species body size and its total net effect for a set of 97 synthetic food webs and also for the Ythan Estuary and Tuesday Lake food webs (empirically described food webs). It is shown that ecological constraints (due to allometric scaling) on the magnitude of entries in the community matrix cause the patterns observed in the inverse community matrix and thus explain the relationship between a species body mass and its total net effect in a community.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This qualitative research expands understanding of how information about a range of Novel Food Technologies (NFTs) is used and assimilated, and the implications of this on the evolution of attitudes and acceptance. This work enhances theoretical and applied understanding of citizens’ evaluative processes around these technologies. The approach applied involved observations of interactive exchanges between citizens and information providers (i.e. food scientists), during which they discussed a specific technology. This flexible, yet structured, approach revealed how individuals construct meaning around information about specific NFTs. A rich dataset of 42 ‘deliberate discourse’ and 42 postdiscourse transcripts was collected. Data analysis encompassed three stages: an initial descriptive account of the complete dataset based on the top-down bottom-up (TDBU) model of attitude formation, followed by inductive and deductive thematic analysis across the selected technology groups. The hybrid thematic analysis undertaken identified a Conceptual Model, which represents a holistic perspective on the influences and associated features directing ‘sense-making’ and ultimate evaluations around the technology clusters. How individuals make sense of these technologies is shaped by: their beliefs, values and personal characteristics; their perceptions of power and control over the application of the technology; and, the assumed relevance of the technology and its applications within different contexts. These influences form the frame for the creation of sense-making around the technologies. Internal negotiations between these influences are evident and evaluations are based on the relative importance of each influence to the individual, which tend to contribute to attitude ambivalence and instability. The findings indicate the processes of forming and changing attitudes towards these technologies are: complex; dependent on characteristics of the individual, technology, application and product; and, impacted by the nature and forms of information provided. Challenges are faced in engaging with the public about these technologies, as levels of knowledge, understanding and interest vary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lactic acid bacteria expolysaccharides (LAB-EPS), in particular those formed from sucrose have the potential to improve food and beverage rheology and enhance their sensory properties potentially replacing or reducing expensive hydrocolloids currently used as improvers in food and beverage industries. Addition of sucrose not only enables EPS formation but also affects organic acid formation, thus influencing the sensory properties of the resulting food/beverage products. The first part of the study the organoleptic modulation of barley malt derived wort fermented using in situ produced bacterial polysaccharides has been investigated. Weisella cibaria MG1 was capable to produce exopolysaccharides during sucrosesupplemented barley malt derived wort fermentation. Even though the strain dominated the (sucrose-supplemented) wort fermentation, it was found to produce EPS (14.4 g l-1) with lower efficiency than in SucMRS (34.6 g l-1). Higher maltose concentration in wort led to the increased formation of oligosaccharide (OS) at the expense of EPS. Additionally, small amounts of organic acids were formed and ethanol remained below 0.5% (v/v). W. cibaria MG1 fermented worts supplemented with 5 or 10% sucrose displayed a shear-thinning behaviour indicating the formation of polymers. This report showed how novel and nutritious LAB fermented wort-base beverage with prospects for further advancements can be formulated using tailored microbial cultures. In the next step, the impact of exopolysaccharide-producing Weissella cibaria MG1 on the ability to improve rheological properties of fermented plant-based milk substitute plant based soy and quinoa grain was evaluated. W. cibaria MG1 grew well in soy milk, exceeding a cell count of log 8 cfu/g within 6 h of fermentation. The presence of W. cibaria MG1 led to a decrease in gelation and fermentation time. EPS isolated from soy yoghurts supplemented with sucrose were higher in molecular weight (1.1 x 108 g/mol vs 6.6 x 107 g/mol), and resulted in reduced gel stiffness (190 ± 2.89 Pa vs 244 ± 15.9 Pa). Soy yoghurts showed typical biopolymer gels structure and the network structure changed to larger pores and less cross-linking in the presence of sucrose and increasing molecular weight of the EPS. In situ investigation of Weissella cibaria MG1 producing EPS on quinoa-based milk was performed. The production of quinoa milk, starting from wholemeal quinoa flour, was optimised to maximise EPS production. On doing that, enzymatic destructuration of protein and carbohydrate components of quinoa milk was successfully achieved applying alpha-amylase and proteases treatments. Fermented wholemeal quinoa milk using Weissella cibaria MG1 showed high viable cell counts (>109 cfu/mL), a pH of 5.16, and significantly higher water holding capacity (WHC, 100 %), viscosity (> 0. 5 Pa s) and exopolysaccharide (EPS) amount (40 mg/L) than the chemically acidified control. High EPS (dextran) concentration in quinoa milk caused earlier aggregation because more EPS occupy more space, and the chenopodin were forced to interact with each other. Direct observation of microstructure in fermented quinoa milk indicated that the network structures of EPS-protein could improve the texture of fermented quinoa milk. Overall, Weissella cibaria MG1 showed favorable technology properties and great potential for further possible application in the development of high viscosity fermented quinoa milk. The last part of the study investigate the ex-situ LAB-EPS (dextran) application compared to other hydrocolloids as a novel food ingredient to compensate for low protein in biscuit and wholemeal wheat flour. Three hydrocolloids, xanthan gum, dextran and hydroxypropyl methylcellulose, were incorporated into bread recipes based on high-protein flours, low-protein flours and coarse wholemeal flour. Hydrocolloid levels of 0–5 % (flour basis) were used in bread recipes to test the water absorption. The quality parameters of dough (farinograph, extensograph, rheofermentometre) and bread (specific volume, crumb structure and staling profile) were determined. Results showed that xanthan had negative impact on the dough and bread quality characteristics. HPMC and dextran generally improved dough and bread quality and showed dosage dependence. Volume of low-protein flour breads were significantly improved by incorporation of 0.5 % of the latter two hydrocolloids. However, dextran outperformed HPMC regarding initial bread hardness and staling shelf life regardless the flour applied in the formulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The establishment and control of oxygen levels in packs of oxygen-sensitive food products such as cheese is imperative in order to maintain product quality over a determined shelf life. Oxygen sensors quantify oxygen concentrations within packaging using a reversible optical measurement process, and this non-destructive nature ensures the entire supply chain can be monitored and can assist in pinpointing negative issues pertaining to product packaging. This study was carried out in a commercial cheese packaging plant and involved the insertion of 768 sensors into 384 flow-wrapped cheese packs (two sensors per pack) that were flushed with 100% carbon dioxide prior to sealing. The cheese blocks were randomly assigned to two different storage groups to assess the effects of package quality, packaging process efficiency, and handling and distribution on package containment. Results demonstrated that oxygen levels increased in both experimental groups examined over the 30-day assessment period. The group subjected to a simulated industrial distribution route and handling procedures of commercial retailed cheese exhibited the highest level of oxygen detected on every day examined and experienced the highest rate of package failure. The study concluded that fluctuating storage conditions, product movement associated with distribution activities, and the possible presence of cheese-derived contaminants such as calcium lactate crystals were chief contributors to package failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seals and humans often target the same food resource, leading to competition. This is of mounting concern with fish stocks in global decline. Grey seals were tracked from southeast Ireland, an area of mixed demersal and pelagic fisheries, and overlap with fisheries on the Celtic Shelf and Irish Sea was assessed. Overall, there was low overlap between the tagged seals and fisheries. However, when we separate active (e.g. trawls) and passive gear (e.g. nets, lines) fisheries, a different picture emerged. Overlap with active fisheries was no different from that expected under a random distribution, but overlap with passive fisheries was significantly higher. This suggests that grey seals may be targeting the same areas as passive fisheries and/or specifically targeting passive gear. There was variation in foraging areas between individual seals suggesting habitat partitioning to reduce intra-specific competition or potential individual specialisation in foraging behaviour. Our findings support other recent assertions that seal/fisheries interactions in Irish waters are an issue in inshore passive fisheries, most likely at the operational and individual level. This suggests that seal population management measures would be unjustifiable, and mitigation is best focused on minimizing interactions at nets.