7 resultados para uncertainty-functions
em Boston University Digital Common
Resumo:
http://www.archive.org/details/theparishpriesto00heusuoft
Resumo:
We investigate the problem of learning disjunctions of counting functions, which are general cases of parity and modulo functions, with equivalence and membership queries. We prove that, for any prime number p, the class of disjunctions of integer-weighted counting functions with modulus p over the domain Znq (or Zn) for any given integer q ≥ 2 is polynomial time learnable using at most n + 1 equivalence queries, where the hypotheses issued by the learner are disjunctions of at most n counting functions with weights from Zp. The result is obtained through learning linear systems over an arbitrary field. In general a counting function may have a composite modulus. We prove that, for any given integer q ≥ 2, over the domain Zn2, the class of read-once disjunctions of Boolean-weighted counting functions with modulus q is polynomial time learnable with only one equivalence query, and the class of disjunctions of log log n Boolean-weighted counting functions with modulus q is polynomial time learnable. Finally, we present an algorithm for learning graph-based counting functions.
Resumo:
Co-release of the inhibitory neurotransmitter GABA and the neuropeptide substance-P (SP) from single axons is a conspicuous feature of the basal ganglia, yet its computational role, if any, has not been resolved. In a new learning model, co-release of GABA and SP from axons of striatal projection neurons emerges as a highly efficient way to compute the uncertainty responses that are exhibited by dopamine (DA) neurons when animals adapt to probabilistic contingencies between rewards and the stimuli that predict their delivery. Such uncertainty-related dopamine release appears to be an adaptive phenotype, because it promotes behavioral switching at opportune times. Understanding the computational linkages between SP and DA in the basal ganglia is important, because Huntington's disease is characterized by massive SP depletion, whereas Parkinson's disease is characterized by massive DA depletion.
Resumo:
Before choosing, it helps to know both the expected value signaled by a predictive cue and the associated uncertainty that the reward will be forthcoming. Recently, Fiorillo et al. (2003) found the dopamine (DA) neurons of the SNc exhibit sustained responses related to the uncertainty that a cure will be followed by reward, in addition to phasic responses related to reward prediction errors (RPEs). This suggests that cue-dependent anticipations of the timing, magnitude, and uncertainty of rewards are learned and reflected in components of the DA signals broadcast by SNc neurons. What is the minimal local circuit model that can explain such multifaceted reward-related learning? A new computational model shows how learned uncertainty responses emerge robustly on single trial along with phasic RPE responses, such that both types of DA responses exhibit the empirically observed dependence on conditional probability, expected value of reward, and time since onset of the reward-predicting cue. The model includes three major pathways for computing: immediate expected values of cures, timed predictions of reward magnitudes (and RPEs), and the uncertainty associated with these predictions. The first two model pathways refine those previously modeled by Brown et al. (1999). A third, newly modeled, pathway is formed by medium spiny projection neurons (MSPNs) of the matrix compartment of the striatum, whose axons co-release GABA and a neuropeptide, substance P, both at synapses with GABAergic neurons in the SNr and with the dendrites (in SNr) of DA neurons whose somas are in ventral SNc. Co-release enables efficient computation of sustained DA uncertainty responses that are a non-monotonic function of the conditonal probability that a reward will follow the cue. The new model's incorporation of a striatal microcircuit allowed it to reveals that variability in striatal cholinergic transmission can explain observed difference, between monkeys, in the amplitutude of the non-monotonic uncertainty function. Involvement of matriceal MSPNs and striatal cholinergic transmission implpies a relation between uncertainty in the cue-reward contigency and action-selection functions of the basal ganglia. The model synthesizes anatomical, electrophysiological and behavioral data regarding the midbrain DA system in a novel way, by relating the ability to compute uncertainty, in parallel with other aspects of reward contingencies, to the unique distribution of SP inputs in ventral SN.
Resumo:
A neural network system, NAVITE, for incremental trajectory generation and obstacle avoidance is presented. Unlike other approaches, the system is effective in unstructured environments. Multimodal inforrnation from visual and range data is used for obstacle detection and to eliminate uncertainty in the measurements. Optimal paths are computed without explicitly optimizing cost functions, therefore reducing computational expenses. Simulations of a planar mobile robot (including the dynamic characteristics of the plant) in obstacle-free and object avoidance trajectories are presented. The system can be extended to incorporate global map information into the local decision-making process.
Resumo:
Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART and supervised fuzzy ARTMAP networks synthesize fuzzy logic and ART by exploiting the formal similarity between tile computations of fuzzy subsethood and the dynamics of ART category choice, search, and learning. Fuzzy ART self-organizes stable recognition categories in response to arbitrary sequences of analog or binary input patterns. It generalizes the binary ART 1 model, replacing the set-theoretic intersection (∩) with the fuzzy intersection(∧), or component-wise minimum. A normalization procedure called complement coding leads to a symmetric theory in which the fuzzy intersection and the fuzzy union (∨), or component-wise maximum, play complementary roles. A geometric interpretation of fuzzy ART represents each category as a box that increases in size as weights decrease. This paper analyzes fuzzy ART models that employ various choice functions for category selection. One such function minimizes total weight change during learning. Benchmark simulations compare peformance of fuzzy ARTMAP systems that use different choice functions.
Resumo:
Advanced Research Projects Agency (ONR N00014-92-J-4015); National Science Foundation (IRI-90-24877); Office of Naval Research (N00014-91-J-1309)