3 resultados para social and personal knowledge
em Boston University Digital Common
Resumo:
This paper attempts two tasks. First, it sketches how the natural sciences (including especially the biological sciences), the social sciences, and the scientific study of religion can be understood to furnish complementary, consonant perspectives on human beings and human groups. This suggests that it is possible to speak of a modern secular interpretation of humanity (MSIH) to which these perspectives contribute (though not without tensions). MSIH is not a comprehensive interpretation of human beings, if only because it adopts a posture of neutrality with regard to the reality of religious objects and the truth of theological claims about them. MSIH is certainly an impressively forceful interpretation, however, and it needs to be reckoned with by any perspective on human life that seeks to insert its truth claims into the arena of public debate. Second, the paper considers two challenges that MSIH poses to specifically theological interpretations of human beings. On the one hand, in spite of its posture of religious neutrality, MSIH is a key element in a class of wider, seemingly antireligious interpretations of humanity, including especially projectionist and illusionist critiques of religion. It is consonance with MSIH that makes these critiques such formidable competitors for traditional theological interpretations of human beings. On the other hand, and taking the religiously neutral posture of MSIH at face value, theological accounts of humanity that seek to coordinate the insights of MSIH with positive religious visions of human life must find ways to overcome or manage such dissonance as arises. The goal of synthesis is defended as important, and strategies for managing these challenges, especially in light of the pluralism of extant philosophical and theological interpretations of human beings, are advocated.
Resumo:
Mapping novel terrain from sparse, complex data often requires the resolution of conflicting information from sensors working at different times, locations, and scales, and from experts with different goals and situations. Information fusion methods help resolve inconsistencies in order to distinguish correct from incorrect answers, as when evidence variously suggests that an object's class is car, truck, or airplane. The methods developed here consider a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an objects class is car, vehicle, or man-made. Underlying relationships among objects are assumed to be unknown to the automated system of the human user. The ARTMAP information fusion system uses distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierarchial knowledge structures. The system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. The procedure is illustrated with two image examples.
Resumo:
Classifying novel terrain or objects from sparse, complex data may require the resolution of conflicting information from sensors woring at different times, locations, and scales, and from sources with different goals and situations. Information fusion methods can help resolve inconsistencies, as when eveidence variously suggests that and object's class is car, truck, or airplane. The methods described her address a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an object's class is car, vehicle, and man-made. Underlying relationships among classes are assumed to be unknown to the autonomated system or the human user. The ARTMAP information fusion system uses distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierachical knowlege structures. The fusion system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. The procedure is illustrated with two image examples, but is not limited to image domain.