2 resultados para search methods
em Boston University Digital Common
Resumo:
Many real world image analysis problems, such as face recognition and hand pose estimation, involve recognizing a large number of classes of objects or shapes. Large margin methods, such as AdaBoost and Support Vector Machines (SVMs), often provide competitive accuracy rates, but at the cost of evaluating a large number of binary classifiers, thus making it difficult to apply such methods when thousands or millions of classes need to be recognized. This thesis proposes a filter-and-refine framework, whereby, given a test pattern, a small number of candidate classes can be identified efficiently at the filter step, and computationally expensive large margin classifiers are used to evaluate these candidates at the refine step. Two different filtering methods are proposed, ClassMap and OVA-VS (One-vs.-All classification using Vector Search). ClassMap is an embedding-based method, works for both boosted classifiers and SVMs, and tends to map the patterns and their associated classes close to each other in a vector space. OVA-VS maps OVA classifiers and test patterns to vectors based on the weights and outputs of weak classifiers of the boosting scheme. At runtime, finding the strongest-responding OVA classifier becomes a classical vector search problem, where well-known methods can be used to gain efficiency. In our experiments, the proposed methods achieve significant speed-ups, in some cases up to two orders of magnitude, compared to exhaustive evaluation of all OVA classifiers. This was achieved in hand pose recognition and face recognition systems where the number of classes ranges from 535 to 48,600.
Resumo:
This thesis elaborates on the problem of preprocessing a large graph so that single-pair shortest-path queries can be answered quickly at runtime. Computing shortest paths is a well studied problem, but exact algorithms do not scale well to real-world huge graphs in applications that require very short response time. The focus is on approximate methods for distance estimation, in particular in landmarks-based distance indexing. This approach involves choosing some nodes as landmarks and computing (offline), for each node in the graph its embedding, i.e., the vector of its distances from all the landmarks. At runtime, when the distance between a pair of nodes is queried, it can be quickly estimated by combining the embeddings of the two nodes. Choosing optimal landmarks is shown to be hard and thus heuristic solutions are employed. Given a budget of memory for the index, which translates directly into a budget of landmarks, different landmark selection strategies can yield dramatically different results in terms of accuracy. A number of simple methods that scale well to large graphs are therefore developed and experimentally compared. The simplest methods choose central nodes of the graph, while the more elaborate ones select central nodes that are also far away from one another. The efficiency of the techniques presented in this thesis is tested experimentally using five different real world graphs with millions of edges; for a given accuracy, they require as much as 250 times less space than the current approach which considers selecting landmarks at random. Finally, they are applied in two important problems arising naturally in large-scale graphs, namely social search and community detection.