8 resultados para recurrent events

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

$u http://books.google.com/books?vid=OCLC02623863&id=mQz8gPn0et8C&a_sbrr=1 View book via Google

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://www.archive.org/details/bibleworkinbible00birduoft

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We can recognize objects through receiving continuously huge temporal information including redundancy and noise, and can memorize them. This paper proposes a neural network model which extracts pre-recognized patterns from temporally sequential patterns which include redundancy, and memorizes the patterns temporarily. This model consists of an adaptive resonance system and a recurrent time-delay network. The extraction is executed by the matching mechanism of the adaptive resonance system, and the temporal information is processed and stored by the recurrent network. Simple simulations are examined to exemplify the property of extraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Working memory neural networks are characterized which encode the invariant temporal order of sequential events that may be presented at widely differing speeds, durations, and interstimulus intervals. This temporal order code is designed to enable all possible groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system. Such a competence is needed in neural architectures which self-organize learned codes for variable-rate speech perception, sensory-motor planning, or 3-D visual object recognition. Using such a working memory, a self-organizing architecture for invariant 3-D visual object recognition is described that is based on the model of Seibert and Waxman [1].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Working memory neural networks are characterized which encode the invariant temporal order of sequential events. Inputs to the networks, called Sustained Temporal Order REcurrent (STORE) models, may be presented at widely differing speeds, durations, and interstimulus intervals. The STORE temporal order code is designed to enable all emergent groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system. Such a competence is needed in neural architectures which self-organize learned codes for variable-rate speech perception, sensory-motor planning, or 3-D visual object recognition. Using such a working memory, a self-organizing architecture for invariant 3-D visual object recognition is described. The new model is based on the model of Seibert and Waxman (1990a), which builds a 3-D representation of an object from a temporally ordered sequence of its 2-D aspect graphs. The new model, called an ARTSTORE model, consists of the following cascade of processing modules: Invariant Preprocessor --> ART 2 --> STORE Model --> ART 2 --> Outstar Network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Grey-White Decision Network is introduced as an application of an on-center, off-surround recurrent cooperative/competitive network for segmentation of magnetic resonance imaging (MRI) brain images. The three layer dynamical system relaxes into a solution where each pixel is labeled as either grey matter, white matter, or "other" matter by considering raw input intensity, edge information, and neighbor interactions. This network is presented as an example of applying a recurrent cooperative/competitive field (RCCF) to a problem with multiple conflicting constraints. Simulations of the network and its phase plane analysis are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural network models of working memory, called Sustained Temporal Order REcurrent (STORE) models, are described. They encode the invariant temporal order of sequential events in short term memory (STM) in a way that mimics cognitive data about working memory, including primacy, recency, and bowed order and error gradients. As new items are presented, the pattern of previously stored items is invariant in the sense that, relative activations remain constant through time. This invariant temporal order code enables all possible groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system. Such a competence is needed to design self-organizing temporal recognition and planning systems in which any subsequence of events may need to be categorized in order to to control and predict future behavior or external events. STORE models show how arbitrary event sequences may be invariantly stored, including repeated events. A preprocessor interacts with the working memory to represent event repeats in spatially separate locations. It is shown why at least two processing levels are needed to invariantly store events presented with variable durations and interstimulus intervals. It is also shown how network parameters control the type and shape of primacy, recency, or bowed temporal order gradients that will be stored.