10 resultados para bottom-up analysis

em Boston University Digital Common


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple sound sources often contain harmonics that overlap and may be degraded by environmental noise. The auditory system is capable of teasing apart these sources into distinct mental objects, or streams. Such an "auditory scene analysis" enables the brain to solve the cocktail party problem. A neural network model of auditory scene analysis, called the AIRSTREAM model, is presented to propose how the brain accomplishes this feat. The model clarifies how the frequency components that correspond to a give acoustic source may be coherently grouped together into distinct streams based on pitch and spatial cues. The model also clarifies how multiple streams may be distinguishes and seperated by the brain. Streams are formed as spectral-pitch resonances that emerge through feedback interactions between frequency-specific spectral representaion of a sound source and its pitch. First, the model transforms a sound into a spatial pattern of frequency-specific activation across a spectral stream layer. The sound has multiple parallel representations at this layer. A sound's spectral representation activates a bottom-up filter that is sensitive to harmonics of the sound's pitch. The filter activates a pitch category which, in turn, activate a top-down expectation that allows one voice or instrument to be tracked through a noisy multiple source environment. Spectral components are suppressed if they do not match harmonics of the top-down expectation that is read-out by the selected pitch, thereby allowing another stream to capture these components, as in the "old-plus-new-heuristic" of Bregman. Multiple simultaneously occuring spectral-pitch resonances can hereby emerge. These resonance and matching mechanisms are specialized versions of Adaptive Resonance Theory, or ART, which clarifies how pitch representations can self-organize durin learning of harmonic bottom-up filters and top-down expectations. The model also clarifies how spatial location cues can help to disambiguate two sources with similar spectral cures. Data are simulated from psychophysical grouping experiments, such as how a tone sweeping upwards in frequency creates a bounce percept by grouping with a downward sweeping tone due to proximity in frequency, even if noise replaces the tones at their interection point. Illusory auditory percepts are also simulated, such as the auditory continuity illusion of a tone continuing through a noise burst even if the tone is not present during the noise, and the scale illusion of Deutsch whereby downward and upward scales presented alternately to the two ears are regrouped based on frequency proximity, leading to a bounce percept. Since related sorts of resonances have been used to quantitatively simulate psychophysical data about speech perception, the model strengthens the hypothesis the ART-like mechanisms are used at multiple levels of the auditory system. Proposals for developing the model to explain more complex streaming data are also provided.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A key goal of behavioral and cognitive neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how the visual cortex sees. Visual cortex, like many parts of perceptual and cognitive neocortex, is organized into six main layers of cells, as well as characteristic sub-lamina. Here it is proposed how these layered circuits help to realize the processes of developement, learning, perceptual grouping, attention, and 3D vision through a combination of bottom-up, horizontal, and top-down interactions. A key theme is that the mechanisms which enable developement and learning to occur in a stable way imply properties of adult behavior. These results thus begin to unify three fields: infant cortical developement, adult cortical neurophysiology and anatomy, and adult visual perception. The identified cortical mechanisms promise to generalize to explain how other perceptual and cognitive processes work.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The concept of attention has been used in many senses, often without clarifying how or why attention works as it does. Attention, like consciousness, is often described in a disembodied way. The present article summarizes neural models and supportive data and how attention is linked to processes of learning, expectation, competition, and consciousness. A key them is that attention modulates cortical self-organization and stability. Perceptual and cognitive neocortex is organized into six main cell layers, with characteristic sub-lamina. Attention is part of unified design of bottom-up, horizontal, and top-down interactions among indentified cells in laminar cortical circuits. Neural models clarify how attention may be allocated during processes of visual perception, learning and search; auditory streaming and speech perception; movement target selection during sensory-motor control; mental imagery and fantasy; and hallucination during mental disorders, among other processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Perceptual grouping is well-known to be a fundamental process during visual perception, notably grouping across scenic regions that do not receive contrastive visual inputs. Illusory contours are a classical example of such groupings. Recent psychophysical and neurophysiological evidence have shown that the grouping process can facilitate rapid synchronization of the cells that are bound together by a grouping, even when the grouping must be completed across regions that receive no contrastive inputs. Synchronous grouping can hereby bind together different object parts that may have become desynchronized due to a variety of factors, and can enhance the efficiency of cortical transmission. Neural models of perceptual grouping have clarified how such fast synchronization may occur by using bipole grouping cells, whose predicted properties have been supported by psychophysical, anatomical, and neurophysiological experiments. These models have not, however, incorporated some of the realistic constraints on which groupings in the brain are conditioned, notably the measured spatial extent of long-range interactions in layer 2/3 of a grouping network, and realistic synaptic and axonal signaling delays within and across cells in different cortical layers. This work addresses the question: Can long-range interactions that obey the bipole constraint achieve fast synchronization under realistic anatomical and neurophysiological constraints that initially desynchronize grouping signals? Can the cells that synchronize retain their analog sensitivity to changing input amplitudes? Can the grouping process complete and synchronize illusory contours across gaps in bottom-up inputs? Our simulations show that the answer to these questions is Yes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article develops the Synchronous Matching Adaptive Resonance Theory (SMART) neural model to explain how the brain may coordinate multiple levels of thalamocortical and corticocortical processing to rapidly learn, and stably remember, important information about a changing world. The model clarifies how bottom-up and top-down processes work together to realize this goal, notably how processes of learning, expectation, attention, resonance, and synchrony are coordinated. The model hereby clarifies, for the first time, how the following levels of brain organization coexist to realize cognitive processing properties that regulate fast learning and stable memory of brain representations: single cell properties, such as spiking dynamics, spike-timing-dependent plasticity (STDP), and acetylcholine modulation; detailed laminar thalamic and cortical circuit designs and their interactions; aggregate cell recordings, such as current-source densities and local field potentials; and single cell and large-scale inter-areal oscillations in the gamma and beta frequency domains. In particular, the model predicts how laminar circuits of multiple cortical areas interact with primary and higher-order specific thalamic nuclei and nonspecific thalamic nuclei to carry out attentive visual learning and information processing. The model simulates how synchronization of neuronal spiking occurs within and across brain regions, and triggers STDP. Matches between bottom-up adaptively filtered input patterns and learned top-down expectations cause gamma oscillations that support attention, resonance, and learning. Mismatches inhibit learning while causing beta oscillations during reset and hypothesis testing operations that are initiated in the deeper cortical layers. The generality of learned recognition codes is controlled by a vigilance process mediated by acetylcholine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Do humans and animals learn exemplars or prototypes when they categorize objects and events in the world? How are different degrees of abstraction realized through learning by neurons in inferotemporal and prefrontal cortex? How do top-down expectations influence the course of learning? Thirty related human cognitive experiments (the 5-4 category structure) have been used to test competing views in the prototype-exemplar debate. In these experiments, during the test phase, subjects unlearn in a characteristic way items that they had learned to categorize perfectly in the training phase. Many cognitive models do not describe how an individual learns or forgets such categories through time. Adaptive Resonance Theory (ART) neural models provide such a description, and also clarify both psychological and neurobiological data. Matching of bottom-up signals with learned top-down expectations plays a key role in ART model learning. Here, an ART model is used to learn incrementally in response to 5-4 category structure stimuli. Simulation results agree with experimental data, achieving perfect categorization in training and a good match to the pattern of errors exhibited by human subjects in the testing phase. These results show how the model learns both prototypes and certain exemplars in the training phase. ART prototypes are, however, unlike the ones posited in the traditional prototype-exemplar debate. Rather, they are critical patterns of features to which a subject learns to pay attention based on past predictive success and the order in which exemplars are experienced. Perturbations of old memories by newly arriving test items generate a performance curve that closely matches the performance pattern of human subjects. The model also clarifies exemplar-based accounts of data concerning amnesia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Memories in Adaptive Resonance Theory (ART) networks are based on matched patterns that focus attention on those portions of bottom-up inputs that match active top-down expectations. While this learning strategy has proved successful for both brain models and applications, computational examples show that attention to early critical features may later distort memory representations during online fast learning. For supervised learning, biased ARTMAP (bARTMAP) solves the problem of over-emphasis on early critical features by directing attention away from previously attended features after the system makes a predictive error. Small-scale, hand-computed analog and binary examples illustrate key model dynamics. Twodimensional simulation examples demonstrate the evolution of bARTMAP memories as they are learned online. Benchmark simulations show that featural biasing also improves performance on large-scale examples. One example, which predicts movie genres and is based, in part, on the Netflix Prize database, was developed for this project. Both first principles and consistent performance improvements on all simulation studies suggest that featural biasing should be incorporated by default in all ARTMAP systems. Benchmark datasets and bARTMAP code are available from the CNS Technology Lab Website: http://techlab.bu.edu/bART/.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The system presented here is based on neurophysiological and electrophysiological data. It computes three types of increasingly integrated temporal and probability contexts, in a bottom-up mode. To each of these contexts corresponds an increasingly specific top-down priming effect on lower processing stages, mostly pattern recognition and discrimination. Contextual learning of time intervals, events' temporal order or sequential dependencies and events' prior probability results from the delivery of large stimuli sequences. This learning gives rise to emergent properties which closely match the experimental data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A neural model is proposed of how laminar interactions in the visual cortex may learn and recognize object texture and form boundaries. The model brings together five interacting processes: region-based texture classification, contour-based boundary grouping, surface filling-in, spatial attention, and object attention. The model shows how form boundaries can determine regions in which surface filling-in occurs; how surface filling-in interacts with spatial attention to generate a form-fitting distribution of spatial attention, or attentional shroud; how the strongest shroud can inhibit weaker shrouds; and how the winning shroud regulates learning of texture categories, and thus the allocation of object attention. The model can discriminate abutted textures with blurred boundaries and is sensitive to texture boundary attributes like discontinuities in orientation and texture flow curvature as well as to relative orientations of texture elements. The model quantitatively fits a large set of human psychophysical data on orientation-based textures. Object boundar output of the model is compared to computer vision algorithms using a set of human segmented photographic images. The model classifies textures and suppresses noise using a multiple scale oriented filterbank and a distributed Adaptive Resonance Theory (dART) classifier. The matched signal between the bottom-up texture inputs and top-down learned texture categories is utilized by oriented competitive and cooperative grouping processes to generate texture boundaries that control surface filling-in and spatial attention. Topdown modulatory attentional feedback from boundary and surface representations to early filtering stages results in enhanced texture boundaries and more efficient learning of texture within attended surface regions. Surface-based attention also provides a self-supervising training signal for learning new textures. Importance of the surface-based attentional feedback in texture learning and classification is tested using a set of textured images from the Brodatz micro-texture album. Benchmark studies vary from 95.1% to 98.6% with attention, and from 90.6% to 93.2% without attention.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A neural network realization of the fuzzy Adaptive Resonance Theory (ART) algorithm is described. Fuzzy ART is capable of rapid stable learning of recognition categories in response to arbitrary sequences of analog or binary input patterns. Fuzzy ART incorporates computations from fuzzy set theory into the ART 1 neural network, which learns to categorize only binary input patterns, thus enabling the network to learn both analog and binary input patterns. In the neural network realization of fuzzy ART, signal transduction obeys a path capacity rule. Category choice is determined by a combination of bottom-up signals and learned category biases. Top-down signals impose upper bounds on feature node activations.