2 resultados para Walton, Izaak, 1593-1683.
em Boston University Digital Common
Resumo:
Load balancing is often used to ensure that nodes in a distributed systems are equally loaded. In this paper, we show that for real-time systems, load balancing is not desirable. In particular, we propose a new load-profiling strategy that allows the nodes of a distributed system to be unequally loaded. Using load profiling, the system attempts to distribute the load amongst its nodes so as to maximize the chances of finding a node that would satisfy the computational needs of incoming real-time tasks. To that end, we describe and evaluate a distributed load-profiling protocol for dynamically scheduling time-constrained tasks in a loosely-coupled distributed environment. When a task is submitted to a node, the scheduling software tries to schedule the task locally so as to meet its deadline. If that is not feasible, it tries to locate another node where this could be done with a high probability of success, while attempting to maintain an overall load profile for the system. Nodes in the system inform each other about their state using a combination of multicasting and gossiping. The performance of the proposed protocol is evaluated via simulation, and is contrasted to other dynamic scheduling protocols for real-time distributed systems. Based on our findings, we argue that keeping a diverse availability profile and using passive bidding (through gossiping) are both advantageous to distributed scheduling for real-time systems.
Resumo:
A foundational issue underlying many overlay network applications ranging from routing to P2P file sharing is that of connectivity management, i.e., folding new arrivals into the existing mesh and re-wiring to cope with changing network conditions. Previous work has considered the problem from two perspectives: devising practical heuristics for specific applications designed to work well in real deployments, and providing abstractions for the underlying problem that are tractable to address via theoretical analyses, especially game-theoretic analysis. Our work unifies these two thrusts first by distilling insights gleaned from clean theoretical models, notably that under natural resource constraints, selfish players can select neighbors so as to efficiently reach near-equilibria that also provide high global performance. Using Egoist, a prototype overlay routing system we implemented on PlanetLab, we demonstrate that our neighbor selection primitives significantly outperform existing heuristics on a variety of performance metrics; that Egoist is competitive with an optimal, but unscalable full-mesh approach; and that it remains highly effective under significant churn. We also describe variants of Egoist's current design that would enable it to scale to overlays of much larger scale and allow it to cater effectively to applications, such as P2P file sharing in unstructured overlays, based on the use of primitives such as scoped-flooding rather than routing.