8 resultados para Vehicle routing problem
em Boston University Digital Common
Resumo:
In many networked applications, independent caching agents cooperate by servicing each other's miss streams, without revealing the operational details of the caching mechanisms they employ. Inference of such details could be instrumental for many other processes. For example, it could be used for optimized forwarding (or routing) of one's own miss stream (or content) to available proxy caches, or for making cache-aware resource management decisions. In this paper, we introduce the Cache Inference Problem (CIP) as that of inferring the characteristics of a caching agent, given the miss stream of that agent. While CIP is insolvable in its most general form, there are special cases of practical importance in which it is, including when the request stream follows an Independent Reference Model (IRM) with generalized power-law (GPL) demand distribution. To that end, we design two basic "litmus" tests that are able to detect LFU and LRU replacement policies, the effective size of the cache and of the object universe, and the skewness of the GPL demand for objects. Using extensive experiments under synthetic as well as real traces, we show that our methods infer such characteristics accurately and quite efficiently, and that they remain robust even when the IRM/GPL assumptions do not hold, and even when the underlying replacement policies are not "pure" LFU or LRU. We exemplify the value of our inference framework by considering example applications.
Resumo:
A foundational issue underlying many overlay network applications ranging from routing to P2P file sharing is that of connectivity management, i.e., folding new arrivals into the existing mesh and re-wiring to cope with changing network conditions. Previous work has considered the problem from two perspectives: devising practical heuristics for specific applications designed to work well in real deployments, and providing abstractions for the underlying problem that are tractable to address via theoretical analyses, especially game-theoretic analysis. Our work unifies these two thrusts first by distilling insights gleaned from clean theoretical models, notably that under natural resource constraints, selfish players can select neighbors so as to efficiently reach near-equilibria that also provide high global performance. Using Egoist, a prototype overlay routing system we implemented on PlanetLab, we demonstrate that our neighbor selection primitives significantly outperform existing heuristics on a variety of performance metrics; that Egoist is competitive with an optimal, but unscalable full-mesh approach; and that it remains highly effective under significant churn. We also describe variants of Egoist's current design that would enable it to scale to overlays of much larger scale and allow it to cater effectively to applications, such as P2P file sharing in unstructured overlays, based on the use of primitives such as scoped-flooding rather than routing.
Resumo:
A foundational issue underlying many overlay network applications ranging from routing to P2P file sharing is that of connectivity management, i.e., folding new arrivals into an existing overlay, and re-wiring to cope with changing network conditions. Previous work has considered the problem from two perspectives: devising practical heuristics for specific applications designed to work well in real deployments, and providing abstractions for the underlying problem that are analytically tractable, especially via game-theoretic analysis. In this paper, we unify these two thrusts by using insights gleaned from novel, realistic theoretic models in the design of Egoist – a prototype overlay routing system that we implemented, deployed, and evaluated on PlanetLab. Using measurements on PlanetLab and trace-based simulations, we demonstrate that Egoist's neighbor selection primitives significantly outperform existing heuristics on a variety of performance metrics, including delay, available bandwidth, and node utilization. Moreover, we demonstrate that Egoist is competitive with an optimal, but unscalable full-mesh approach, remains highly effective under significant churn, is robust to cheating, and incurs minimal overhead. Finally, we discuss some of the potential benefits Egoist may offer to applications.
Resumo:
Interdomain routing on the Internet is performed using route preference policies specified independently, and arbitrarily by each Autonomous System in the network. These policies are used in the border gateway protocol (BGP) by each AS when selecting next-hop choices for routes to each destination. Conflicts between policies used by different ASs can lead to routing instabilities that, potentially, cannot be resolved no matter how long BGP is run. The Stable Paths Problem (SPP) is an abstract graph theoretic model of the problem of selecting nexthop routes for a destination. A stable solution to the problem is a set of next-hop choices, one for each AS, that is compatible with the policies of each AS. In a stable solution each AS has selected its best next-hop given that the next-hop choices of all neighbors are fixed. BGP can be viewed as a distributed algorithm for solving SPP. In this report we consider the stable paths problem, as well as a family of restricted variants of the stable paths problem, which we call F stable paths problems. We show that two very simple variants of the stable paths problem are also NP-complete. In addition we show that for networks with a DAG topology, there is an efficient centralized algorithm to solve the stable paths problem, and that BGP always efficiently converges to a stable solution on such networks.
Resumo:
A foundational issue underlying many overlay network applications ranging from routing to peer-to-peer file sharing is that of connectivity management, i.e., folding new arrivals into an existing overlay, and rewiring to cope with changing network conditions. Previous work has considered the problem from two perspectives: devising practical heuristics for specific applications designed to work well in real deployments, and providing abstractions for the underlying problem that are analytically tractable, especially via game-theoretic analysis. In this paper, we unify these two thrusts by using insights gleaned from novel, realistic theoretic models in the design of Egoist – a distributed overlay routing system that we implemented, deployed, and evaluated on PlanetLab. Using extensive measurements of paths between nodes, we demonstrate that Egoist’s neighbor selection primitives significantly outperform existing heuristics on a variety of performance metrics, including delay, available bandwidth, and node utilization. Moreover, we demonstrate that Egoist is competitive with an optimal, but unscalable full-mesh approach, remains highly effective under significant churn, is robust to cheating, and incurs minimal overhead. Finally, we use a multiplayer peer-to-peer game to demonstrate the value of Egoist to end-user applications. This technical report supersedes BUCS-TR-2007-013.
Resumo:
In this paper we introduce a theory of policy routing dynamics based on fundamental axioms of routing update mechanisms. We develop a dynamic policy routing model (DPR) that extends the static formalism of the stable paths problem (introduced by Griffin et al.) with discrete synchronous time. DPR captures the propagation of path changes in any dynamic network irrespective of its time-varying topology. We introduce several novel structures such as causation chains, dispute fences and policy digraphs that model different aspects of routing dynamics and provide insight into how these dynamics manifest in a network. We exercise the practicality of the theoretical foundation provided by DPR with two fundamental problems: routing dynamics minimization and policy conflict detection. The dynamics minimization problem utilizes policy digraphs, that capture the dependencies in routing policies irrespective of underlying topology dynamics, to solve a graph optimization problem. This optimization problem explicitly minimizes the number of routing update messages in a dynamic network by optimally changing the path preferences of a minimal subset of nodes. The conflict detection problem, on the other hand, utilizes a theoretical result of DPR where the root cause of a causation cycle (i.e., cycle of routing update messages) can be precisely inferred as either a transient route flap or a dispute wheel (i.e., policy conflict). Using this result we develop SafetyPulse, a token-based distributed algorithm to detect policy conflicts in a dynamic network. SafetyPulse is privacy preserving, computationally efficient, and provably correct.
Resumo:
Energy-efficient communication has recently become a key challenge for both researchers and industries. In this paper, we propose a new model in which a Content Provider and an Internet Service Provider cooperate to reduce the total power consumption. We solve the problem optimally and compare it with a classic formulation, whose aim is to minimize user delay. Results, although preliminary, show that power savings can be huge: up to 71% on real ISP topologies. We also show how the degree of cooperation impacts overall power consumption. Finally, we consider the impact of the Content Provider location on the total power savings.
Resumo:
To provide real-time service or engineer constrained-based paths, networks require the underlying routing algorithm to be able to find low-cost paths that satisfy given Quality-of-Service (QoS) constraints. However, the problem of constrained shortest (least-cost) path routing is known to be NP-hard, and some heuristics have been proposed to find a near-optimal solution. However, these heuristics either impose relationships among the link metrics to reduce the complexity of the problem which may limit the general applicability of the heuristic, or are too costly in terms of execution time to be applicable to large networks. In this paper, we focus on solving the delay-constrained minimum-cost path problem, and present a fast algorithm to find a near-optimal solution. This algorithm, called DCCR (for Delay-Cost-Constrained Routing), is a variant of the k-shortest path algorithm. DCCR uses a new adaptive path weight function together with an additional constraint imposed on the path cost, to restrict the search space. Thus, DCCR can return a near-optimal solution in a very short time. Furthermore, we use the method proposed by Blokh and Gutin to further reduce the search space by using a tighter bound on path cost. This makes our algorithm more accurate and even faster. We call this improved algorithm SSR+DCCR (for Search Space Reduction+DCCR). Through extensive simulations, we confirm that SSR+DCCR performs very well compared to the optimal but very expensive solution.