5 resultados para Two Approaches
em Boston University Digital Common
Resumo:
Accurate measurement of network bandwidth is crucial for flexible Internet applications and protocols which actively manage and dynamically adapt to changing utilization of network resources. These applications must do so to perform tasks such as distributing and delivering high-bandwidth media, scheduling service requests and performing admission control. Extensive work has focused on two approaches to measuring bandwidth: measuring it hop-by-hop, and measuring it end-to-end along a path. Unfortunately, best-practice techniques for the former are inefficient and techniques for the latter are only able to observe bottlenecks visible at end-to-end scope. In this paper, we develop and simulate end-to-end probing methods which can measure bottleneck bandwidth along arbitrary, targeted subpaths of a path in the network, including subpaths shared by a set of flows. As another important contribution, we describe a number of practical applications which we foresee as standing to benefit from solutions to this problem, especially in emerging, flexible network architectures such as overlay networks, ad-hoc networks, peer-to-peer architectures and massively accessed content servers.
Resumo:
We revisit the problem of connection management for reliable transport. At one extreme, a pure soft-state (SS) approach (as in Delta-t [9]) safely removes the state of a connection at the sender and receiver once the state timers expire without the need for explicit removal messages. And new connections are established without an explicit handshaking phase. On the other hand, a hybrid hard-state/soft-state (HS+SS) approach (as in TCP) uses both explicit handshaking as well as timer-based management of the connection’s state. In this paper, we consider the worst-case scenario of reliable single-message communication, and develop a common analytical model that can be instantiated to capture either the SS approach or the HS+SS approach. We compare the two approaches in terms of goodput, message and state overhead. We also use simulations to compare against other approaches, and evaluate them in terms of correctness (with respect to data loss and duplication) and robustness to bad network conditions (high message loss rate and variable channel delays). Our results show that the SS approach is more robust, and has lower message overhead. On the other hand, SS requires more memory to keep connection states, which reduces goodput. Given memories are getting bigger and cheaper, SS presents the best choice over bandwidth-constrained, error-prone networks.
Resumo:
University of Pretoria / Dissertation / Department of Church History and Church Policy / Advised by Prof J W Hofmeyr
Resumo:
The advent of virtualization and cloud computing technologies necessitates the development of effective mechanisms for the estimation and reservation of resources needed by content providers to deliver large numbers of video-on-demand (VOD) streams through the cloud. Unfortunately, capacity planning for the QoS-constrained delivery of a large number of VOD streams is inherently difficult as VBR encoding schemes exhibit significant bandwidth variability. In this paper, we present a novel resource management scheme to make such allocation decisions using a mixture of per-stream reservations and an aggregate reservation, shared across all streams to accommodate peak demands. The shared reservation provides capacity slack that enables statistical multiplexing of peak rates, while assuring analytically bounded frame-drop probabilities, which can be adjusted by trading off buffer space (and consequently delay) and bandwidth. Our two-tiered bandwidth allocation scheme enables the delivery of any set of streams with less bandwidth (or equivalently with higher link utilization) than state-of-the-art deterministic smoothing approaches. The algorithm underlying our proposed frame-work uses three per-stream parameters and is linear in the number of servers, making it particularly well suited for use in an on-line setting. We present results from extensive trace-driven simulations, which confirm the efficiency of our scheme especially for small buffer sizes and delay bounds, and which underscore the significant realizable bandwidth savings, typically yielding losses that are an order of magnitude or more below our analytically derived bounds.
Resumo:
Ongoing research at Boston University has produced computational models of biological vision and learning that embody a growing corpus of scientific data and predictions. Vision models perform long-range grouping and figure/ground segmentation, and memory models create attentionally controlled recognition codes that intrinsically cornbine botton-up activation and top-down learned expectations. These two streams of research form the foundation of novel dynamically integrated systems for image understanding. Simulations using multispectral images illustrate road completion across occlusions in a cluttered scene and information fusion from incorrect labels that are simultaneously inconsistent and correct. The CNS Vision and Technology Labs (cns.bu.edulvisionlab and cns.bu.edu/techlab) are further integrating science and technology through analysis, testing, and development of cognitive and neural models for large-scale applications, complemented by software specification and code distribution.