28 resultados para Shape classification
em Boston University Digital Common
Resumo:
An appearance-based framework for 3D hand shape classification and simultaneous camera viewpoint estimation is presented. Given an input image of a segmented hand, the most similar matches from a large database of synthetic hand images are retrieved. The ground truth labels of those matches, containing hand shape and camera viewpoint information, are returned by the system as estimates for the input image. Database retrieval is done hierarchically, by first quickly rejecting the vast majority of all database views, and then ranking the remaining candidates in order of similarity to the input. Four different similarity measures are employed, based on edge location, edge orientation, finger location and geometric moments.
Resumo:
Nearest neighbor retrieval is the task of identifying, given a database of objects and a query object, the objects in the database that are the most similar to the query. Retrieving nearest neighbors is a necessary component of many practical applications, in fields as diverse as computer vision, pattern recognition, multimedia databases, bioinformatics, and computer networks. At the same time, finding nearest neighbors accurately and efficiently can be challenging, especially when the database contains a large number of objects, and when the underlying distance measure is computationally expensive. This thesis proposes new methods for improving the efficiency and accuracy of nearest neighbor retrieval and classification in spaces with computationally expensive distance measures. The proposed methods are domain-independent, and can be applied in arbitrary spaces, including non-Euclidean and non-metric spaces. In this thesis particular emphasis is given to computer vision applications related to object and shape recognition, where expensive non-Euclidean distance measures are often needed to achieve high accuracy. The first contribution of this thesis is the BoostMap algorithm for embedding arbitrary spaces into a vector space with a computationally efficient distance measure. Using this approach, an approximate set of nearest neighbors can be retrieved efficiently - often orders of magnitude faster than retrieval using the exact distance measure in the original space. The BoostMap algorithm has two key distinguishing features with respect to existing embedding methods. First, embedding construction explicitly maximizes the amount of nearest neighbor information preserved by the embedding. Second, embedding construction is treated as a machine learning problem, in contrast to existing methods that are based on geometric considerations. The second contribution is a method for constructing query-sensitive distance measures for the purposes of nearest neighbor retrieval and classification. In high-dimensional spaces, query-sensitive distance measures allow for automatic selection of the dimensions that are the most informative for each specific query object. It is shown theoretically and experimentally that query-sensitivity increases the modeling power of embeddings, allowing embeddings to capture a larger amount of the nearest neighbor structure of the original space. The third contribution is a method for speeding up nearest neighbor classification by combining multiple embedding-based nearest neighbor classifiers in a cascade. In a cascade, computationally efficient classifiers are used to quickly classify easy cases, and classifiers that are more computationally expensive and also more accurate are only applied to objects that are harder to classify. An interesting property of the proposed cascade method is that, under certain conditions, classification time actually decreases as the size of the database increases, a behavior that is in stark contrast to the behavior of typical nearest neighbor classification systems. The proposed methods are evaluated experimentally in several different applications: hand shape recognition, off-line character recognition, online character recognition, and efficient retrieval of time series. In all datasets, the proposed methods lead to significant improvements in accuracy and efficiency compared to existing state-of-the-art methods. In some datasets, the general-purpose methods introduced in this thesis even outperform domain-specific methods that have been custom-designed for such datasets.
Resumo:
Nearest neighbor classification using shape context can yield highly accurate results in a number of recognition problems. Unfortunately, the approach can be too slow for practical applications, and thus approximation strategies are needed to make shape context practical. This paper proposes a method for efficient and accurate nearest neighbor classification in non-Euclidean spaces, such as the space induced by the shape context measure. First, a method is introduced for constructing a Euclidean embedding that is optimized for nearest neighbor classification accuracy. Using that embedding, multiple approximations of the underlying non-Euclidean similarity measure are obtained, at different levels of accuracy and efficiency. The approximations are automatically combined to form a cascade classifier, which applies the slower approximations only to the hardest cases. Unlike typical cascade-of-classifiers approaches, that are applied to binary classification problems, our method constructs a cascade for a multiclass problem. Experiments with a standard shape data set indicate that a two-to-three order of magnitude speed up is gained over the standard shape context classifier, with minimal losses in classification accuracy.
Resumo:
Shock wave lithotripsy is the preferred treatment modality for kidney stones in the United States. Despite clinical use for over twenty-five years, the mechanisms of stone fragmentation are still under debate. A piezoelectric array was employed to examine the effect of waveform shape and pressure distribution on stone fragmentation in lithotripsy. The array consisted of 170 elements placed on the inner surface of a 15 cm-radius spherical cap. Each element was driven independently using a 170 individual pulsers, each capable of generating 1.2 kV. The acoustic field was characterized using a fiber optic probe hydrophone with a bandwidth of 30 MHz and a spatial resolution of 100 μm. When all elements were driven simultaneously, the focal waveform was a shock wave with peak pressures p+ =65±3MPa and p−=−16±2MPa and the −6 dB focal region was 13 mm long and 2 mm wide. The delay for each element was the only control parameter for customizing the acoustic field and waveform shape, which was done with the aim of investigating the hypothesized mechanisms of stone fragmentation such as spallation, shear, squeezing, and cavitation. The acoustic field customization was achieved by employing the angular spectrum approach for modeling the forward wave propagation and regression of least square errors to determine the optimal set of delays. Results from the acoustic field customization routine and its implications on stone fragmentation will be discussed.
Resumo:
It is well documented that the presence of even a few air bubbles in water can signifi- cantly alter the propagation and scattering of sound. Air bubbles are both naturally and artificially generated in all marine environments, especially near the sea surface. The abil- ity to measure the acoustic propagation parameters of bubbly liquids in situ has long been a goal of the underwater acoustics community. One promising solution is a submersible, thick-walled, liquid-filled impedance tube. Recent water-filled impedance tube work was successful at characterizing low void fraction bubbly liquids in the laboratory [1]. This work details the modifications made to the existing impedance tube design to allow for submersed deployment in a controlled environment, such as a large tank or a test pond. As well as being submersible, the useable frequency range of the device is increased from 5 - 9 kHz to 1 - 16 kHz and it does not require any form of calibration. The opening of the new impedance tube is fitted with a large stainless steel flange to better define the boundary condition on the plane of the tube opening. The new device was validated against the classic theoretical result for the complex reflection coefficient of a tube opening fitted with an infinite flange. The complex reflection coefficient was then measured with a bubbly liquid (order 250 micron radius and 0.1 - 0.5 % void fraction) outside the tube opening. Results from the bubbly liquid experiments were inconsistent with flanged tube theory using current bubbly liquid models. The results were more closely matched to unflanged tube theory, suggesting that the high attenuation and phase speeds in the bubbly liquid made the tube opening appear as if it were radiating into free space.
Resumo:
We describe our work on shape-based image database search using the technique of modal matching. Modal matching employs a deformable shape decomposition that allows users to select example objects and have the computer efficiently sort the set of objects based on the similarity of their shape. Shapes are compared in terms of the types of nonrigid deformations (differences) that relate them. The modal decomposition provides deformation "control knobs" for flexible matching and thus allows for selecting weighted subsets of shape parameters that are deemed significant for a particular category or context. We demonstrate the utility of this approach for shape comparison in 2-D image databases; however, the general formulation is applicable to signals of any dimensionality.
Resumo:
BoostMap is a recently proposed method for efficient approximate nearest neighbor retrieval in arbitrary non-Euclidean spaces with computationally expensive and possibly non-metric distance measures. Database and query objects are embedded into a Euclidean space, in which similarities can be rapidly measured using a weighted Manhattan distance. The key idea is formulating embedding construction as a machine learning task, where AdaBoost is used to combine simple, 1D embeddings into a multidimensional embedding that preserves a large amount of the proximity structure of the original space. This paper demonstrates that, using the machine learning formulation of BoostMap, we can optimize embeddings for indexing and classification, in ways that are not possible with existing alternatives for constructive embeddings, and without additional costs in retrieval time. First, we show how to construct embeddings that are query-sensitive, in the sense that they yield a different distance measure for different queries, so as to improve nearest neighbor retrieval accuracy for each query. Second, we show how to optimize embeddings for nearest neighbor classification tasks, by tuning them to approximate a parameter space distance measure, instead of the original feature-based distance measure.
Resumo:
We describe a method for shape-based image database search that uses deformable prototypes to represent categories. Rather than directly comparing a candidate shape with all shape entries in the database, shapes are compared in terms of the types of nonrigid deformations (differences) that relate them to a small subset of representative prototypes. To solve the shape correspondence and alignment problem, we employ the technique of modal matching, an information-preserving shape decomposition for matching, describing, and comparing shapes despite sensor variations and nonrigid deformations. In modal matching, shape is decomposed into an ordered basis of orthogonal principal components. We demonstrate the utility of this approach for shape comparison in 2-D image databases.
Resumo:
A new deformable shape-based method for color region segmentation is described. The method includes two stages: over-segmentation using a traditional color region segmentation algorithm, followed by deformable model-based region merging via grouping and hypothesis selection. During the second stage, region merging and object identification are executed simultaneously. A statistical shape model is used to estimate the likelihood of region groupings and model hypotheses. The prior distribution on deformation parameters is precomputed using principal component analysis over a training set of region groupings. Once trained, the system autonomously segments deformed shapes from the background, while not merging them with similarly colored adjacent objects. Furthermore, the recovered parametric shape model can be used directly in object recognition and comparison. Experiments in segmentation and image retrieval are reported.
Resumo:
Based on our previous work in deformable shape model-based object detection, a new method is proposed that uses index trees for organizing shape features to support content-based retrieval applications. In the proposed strategy, different shape feature sets can be used in index trees constructed for object detection and shape similarity comparison respectively. There is a direct correspondence between the two shape feature sets. As a result, application-specific features can be obtained efficiently for shape-based retrieval after object detection. A novel approach is proposed that allows retrieval of images based on the population distribution of deformed shapes in each image. Experiments testing these new approaches have been conducted using an image database that contains blood cell micrographs. The precision vs. recall performance measure shows that our method is superior to previous methods.
Resumo:
Object detection and recognition are important problems in computer vision. The challenges of these problems come from the presence of noise, background clutter, large within class variations of the object class and limited training data. In addition, the computational complexity in the recognition process is also a concern in practice. In this thesis, we propose one approach to handle the problem of detecting an object class that exhibits large within-class variations, and a second approach to speed up the classification processes. In the first approach, we show that foreground-background classification (detection) and within-class classification of the foreground class (pose estimation) can be jointly solved with using a multiplicative form of two kernel functions. One kernel measures similarity for foreground-background classification. The other kernel accounts for latent factors that control within-class variation and implicitly enables feature sharing among foreground training samples. For applications where explicit parameterization of the within-class states is unavailable, a nonparametric formulation of the kernel can be constructed with a proper foreground distance/similarity measure. Detector training is accomplished via standard Support Vector Machine learning. The resulting detectors are tuned to specific variations in the foreground class. They also serve to evaluate hypotheses of the foreground state. When the image masks for foreground objects are provided in training, the detectors can also produce object segmentation. Methods for generating a representative sample set of detectors are proposed that can enable efficient detection and tracking. In addition, because individual detectors verify hypotheses of foreground state, they can also be incorporated in a tracking-by-detection frame work to recover foreground state in image sequences. To run the detectors efficiently at the online stage, an input-sensitive speedup strategy is proposed to select the most relevant detectors quickly. The proposed approach is tested on data sets of human hands, vehicles and human faces. On all data sets, the proposed approach achieves improved detection accuracy over the best competing approaches. In the second part of the thesis, we formulate a filter-and-refine scheme to speed up recognition processes. The binary outputs of the weak classifiers in a boosted detector are used to identify a small number of candidate foreground state hypotheses quickly via Hamming distance or weighted Hamming distance. The approach is evaluated in three applications: face recognition on the face recognition grand challenge version 2 data set, hand shape detection and parameter estimation on a hand data set, and vehicle detection and estimation of the view angle on a multi-pose vehicle data set. On all data sets, our approach is at least five times faster than simply evaluating all foreground state hypotheses with virtually no loss in classification accuracy.
Resumo:
A common design of an object recognition system has two steps, a detection step followed by a foreground within-class classification step. For example, consider face detection by a boosted cascade of detectors followed by face ID recognition via one-vs-all (OVA) classifiers. Another example is human detection followed by pose recognition. Although the detection step can be quite fast, the foreground within-class classification process can be slow and becomes a bottleneck. In this work, we formulate a filter-and-refine scheme, where the binary outputs of the weak classifiers in a boosted detector are used to identify a small number of candidate foreground state hypotheses quickly via Hamming distance or weighted Hamming distance. The approach is evaluated in three applications: face recognition on the FRGC V2 data set, hand shape detection and parameter estimation on a hand data set and vehicle detection and view angle estimation on a multi-view vehicle data set. On all data sets, our approach has comparable accuracy and is at least five times faster than the brute force approach.
Resumo:
A method for deformable shape detection and recognition is described. Deformable shape templates are used to partition the image into a globally consistent interpretation, determined in part by the minimum description length principle. Statistical shape models enforce the prior probabilities on global, parametric deformations for each object class. Once trained, the system autonomously segments deformed shapes from the background, while not merging them with adjacent objects or shadows. The formulation can be used to group image regions based on any image homogeneity predicate; e.g., texture, color, or motion. The recovered shape models can be used directly in object recognition. Experiments with color imagery are reported.
Resumo:
We present a framework for estimating 3D relative structure (shape) and motion given objects undergoing nonrigid deformation as observed from a fixed camera, under perspective projection. Deforming surfaces are approximated as piece-wise planar, and piece-wise rigid. Robust registration methods allow tracking of corresponding image patches from view to view and recovery of 3D shape despite occlusions, discontinuities, and varying illumination conditions. Many relatively small planar/rigid image patch trackers are scattered throughout the image; resulting estimates of structure and motion at each patch are combined over local neighborhoods via an oriented particle systems formulation. Preliminary experiments have been conducted on real image sequences of deforming objects and on synthetic sequences where ground truth is known.
Resumo:
We propose to investigate a model-based technique for encoding non-rigid object classes in terms of object prototypes. Objects from the same class can be parameterized by identifying shape and appearance invariants of the class to devise low-level representations. The approach presented here creates a flexible model for an object class from a set of prototypes. This model is then used to estimate the parameters of low-level representation of novel objects as combinations of the prototype parameters. Variations in the object shape are modeled as non-rigid deformations. Appearance variations are modeled as intensity variations. In the training phase, the system is presented with several example prototype images. These prototype images are registered to a reference image by a finite element-based technique called Active Blobs. The deformations of the finite element model to register a prototype image with the reference image provide the shape description or shape vector for the prototype. The shape vector for each prototype, is then used to warp the prototype image onto the reference image and obtain the corresponding texture vector. The prototype texture vectors, being warped onto the same reference image have a pixel by pixel correspondence with each other and hence are "shape normalized". Given sufficient number of prototypes that exhibit appropriate in-class variations, the shape and the texture vectors define a linear prototype subspace that spans the object class. Each prototype is a vector in this subspace. The matching phase involves the estimation of a set of combination parameters for synthesis of the novel object by combining the prototype shape and texture vectors. The strengths of this technique lie in the combined estimation of both shape and appearance parameters. This is in contrast with the previous approaches where shape and appearance parameters were estimated separately.