5 resultados para Shape classification
em CaltechTHESIS
Resumo:
Humans are able of distinguishing more than 5000 visual categories even in complex environments using a variety of different visual systems all working in tandem. We seem to be capable of distinguishing thousands of different odors as well. In the machine learning community, many commonly used multi-class classifiers do not scale well to such large numbers of categories. This thesis demonstrates a method of automatically creating application-specific taxonomies to aid in scaling classification algorithms to more than 100 cate- gories using both visual and olfactory data. The visual data consists of images collected online and pollen slides scanned under a microscope. The olfactory data was acquired by constructing a small portable sniffing apparatus which draws air over 10 carbon black polymer composite sensors. We investigate performance when classifying 256 visual categories, 8 or more species of pollen and 130 olfactory categories sampled from common household items and a standardized scratch-and-sniff test. Taxonomies are employed in a divide-and-conquer classification framework which improves classification time while allowing the end user to trade performance for specificity as needed. Before classification can even take place, the pollen counter and electronic nose must filter out a high volume of background “clutter” to detect the categories of interest. In the case of pollen this is done with an efficient cascade of classifiers that rule out most non-pollen before invoking slower multi-class classifiers. In the case of the electronic nose, much of the extraneous noise encountered in outdoor environments can be filtered using a sniffing strategy which preferentially samples the visensor response at frequencies that are relatively immune to background contributions from ambient water vapor. This combination of efficient background rejection with scalable classification algorithms is tested in detail for three separate projects: 1) the Caltech-256 Image Dataset, 2) the Caltech Automated Pollen Identification and Counting System (CAPICS) and 3) a portable electronic nose specially constructed for outdoor use.
Resumo:
RNA interference (RNAi) is a powerful biological pathway allowing for sequence-specific knockdown of any gene of interest. While RNAi is a proven tool for probing gene function in biological circuits, it is limited by being constitutively ON and executes the logical operation: silence gene Y. To provide greater control over post-transcriptional gene silencing, we propose engineering a biological logic gate to implement “conditional RNAi.” Such a logic gate would silence gene Y only upon the expression of gene X, a completely unrelated gene, executing the logic: if gene X is transcribed, silence independent gene Y. Silencing of gene Y could be confined to a specific time and/or tissue by appropriately selecting gene X.
To implement the logic of conditional RNAi, we present the design and experimental validation of three nucleic acid self-assembly mechanisms which detect a sub-sequence of mRNA X and produce a Dicer substrate specific to gene Y. We introduce small conditional RNAs (scRNAs) to execute the signal transduction under isothermal conditions. scRNAs are small RNAs which change conformation, leading to both shape and sequence signal transduction, in response to hybridization to an input nucleic acid target. While all three conditional RNAi mechanisms execute the same logical operation, they explore various design alternatives for nucleic acid self-assembly pathways, including the use of duplex and monomer scRNAs, stable versus metastable reactants, multiple methods of nucleation, and 3-way and 4-way branch migration.
We demonstrate the isothermal execution of the conditional RNAi mechanisms in a test tube with recombinant Dicer. These mechanisms execute the logic: if mRNA X is detected, produce a Dicer substrate targeting independent mRNA Y. Only the final Dicer substrate, not the scRNA reactants or intermediates, is efficiently processed by Dicer. Additional work in human whole-cell extracts and a model tissue-culture system delves into both the promise and challenge of implementing conditional RNAi in vivo.
Resumo:
Observational studies of our solar system's small-body populations (asteroids and comets) offer insight into the history of our planetary system, as these minor planets represent the left-over building blocks from its formation. The Palomar Transient Factory (PTF) survey began in 2009 as the latest wide-field sky-survey program to be conducted on the 1.2-meter Samuel Oschin telescope at Palomar Observatory. Though its main science program has been the discovery of high-energy extragalactic sources (such as supernovae), during its first five years PTF has collected nearly five million observations of over half a million unique solar system small bodies. This thesis begins to analyze this vast data set to address key population-level science topics, including: the detection rates of rare main-belt comets and small near-Earth asteroids, the spin and shape properties of asteroids as inferred from their lightcurves, the applicability of this visible light data to the interpretation of ultraviolet asteroid observations, and a comparison of the physical properties of main-belt and Jovian Trojan asteroids. Future sky-surveys would benefit from application of the analytical techniques presented herein, which include novel modeling methods and unique applications of machine-learning classification. The PTF asteroid small-body data produced in the course of this thesis work should remain a fertile source of solar system science and discovery for years to come.
Resumo:
Theoretical and experimental studies were conducted to investigate the wave induced oscillations in an arbitrary shaped harbor with constant depth which is connected to the open-sea.
A theory termed the “arbitrary shaped harbor” theory is developed. The solution of the Helmholtz equation, ∇2f + k2f = 0, is formulated as an integral equation; an approximate method is employed to solve the integral equation by converting it to a matrix equation. The final solution is obtained by equating, at the harbor entrance, the wave amplitude and its normal derivative obtained from the solutions for the regions outside and inside the harbor.
Two special theories called the circular harbor theory and the rectangular harbor theory are also developed. The coordinates inside a circular and a rectangular harbor are separable; therefore, the solution for the region inside these harbors is obtained by the method of separation of variables. For the solution in the open-sea region, the same method is used as that employed for the arbitrary shaped harbor theory. The final solution is also obtained by a matching procedure similar to that used for the arbitrary shaped harbor theory. These two special theories provide a useful analytical check on the arbitrary shaped harbor theory.
Experiments were conducted to verify the theories in a wave basin 15 ft wide by 31 ft long with an effective system of wave energy dissipators mounted along the boundary to simulate the open-sea condition.
Four harbors were investigated theoretically and experimentally: circular harbors with a 10° opening and a 60° opening, a rectangular harbor, and a model of the East and West Basins of Long Beach Harbor located in Long Beach, California.
Theoretical solutions for these four harbors using the arbitrary shaped harbor theory were obtained. In addition, the theoretical solutions for the circular harbors and the rectangular harbor using the two special theories were also obtained. In each case, the theories have proven to agree well with the experimental data.
It is found that: (1) the resonant frequencies for a specific harbor are predicted correctly by the theory, although the amplification factors at resonance are somewhat larger than those found experimentally,(2) for the circular harbors, as the width of the harbor entrance increases, the amplification at resonance decreases, but the wave number bandwidth at resonance increases, (3) each peak in the curve of entrance velocity vs incident wave period corresponds to a distinct mode of resonant oscillation inside the harbor, thus the velocity at the harbor entrance appears to be a good indicator for resonance in harbors of complicated shape, (4) the results show that the present theory can be applied with confidence to prototype harbors with relatively uniform depth and reflective interior boundaries.
Resumo:
Optical Coherence Tomography(OCT) is a popular, rapidly growing imaging technique with an increasing number of bio-medical applications due to its noninvasive nature. However, there are three major challenges in understanding and improving an OCT system: (1) Obtaining an OCT image is not easy. It either takes a real medical experiment or requires days of computer simulation. Without much data, it is difficult to study the physical processes underlying OCT imaging of different objects simply because there aren't many imaged objects. (2) Interpretation of an OCT image is also hard. This challenge is more profound than it appears. For instance, it would require a trained expert to tell from an OCT image of human skin whether there is a lesion or not. This is expensive in its own right, but even the expert cannot be sure about the exact size of the lesion or the width of the various skin layers. The take-away message is that analyzing an OCT image even from a high level would usually require a trained expert, and pixel-level interpretation is simply unrealistic. The reason is simple: we have OCT images but not their underlying ground-truth structure, so there is nothing to learn from. (3) The imaging depth of OCT is very limited (millimeter or sub-millimeter on human tissues). While OCT utilizes infrared light for illumination to stay noninvasive, the downside of this is that photons at such long wavelengths can only penetrate a limited depth into the tissue before getting back-scattered. To image a particular region of a tissue, photons first need to reach that region. As a result, OCT signals from deeper regions of the tissue are both weak (since few photons reached there) and distorted (due to multiple scatterings of the contributing photons). This fact alone makes OCT images very hard to interpret.
This thesis addresses the above challenges by successfully developing an advanced Monte Carlo simulation platform which is 10000 times faster than the state-of-the-art simulator in the literature, bringing down the simulation time from 360 hours to a single minute. This powerful simulation tool not only enables us to efficiently generate as many OCT images of objects with arbitrary structure and shape as we want on a common desktop computer, but it also provides us the underlying ground-truth of the simulated images at the same time because we dictate them at the beginning of the simulation. This is one of the key contributions of this thesis. What allows us to build such a powerful simulation tool includes a thorough understanding of the signal formation process, clever implementation of the importance sampling/photon splitting procedure, efficient use of a voxel-based mesh system in determining photon-mesh interception, and a parallel computation of different A-scans that consist a full OCT image, among other programming and mathematical tricks, which will be explained in detail later in the thesis.
Next we aim at the inverse problem: given an OCT image, predict/reconstruct its ground-truth structure on a pixel level. By solving this problem we would be able to interpret an OCT image completely and precisely without the help from a trained expert. It turns out that we can do much better. For simple structures we are able to reconstruct the ground-truth of an OCT image more than 98% correctly, and for more complicated structures (e.g., a multi-layered brain structure) we are looking at 93%. We achieved this through extensive uses of Machine Learning. The success of the Monte Carlo simulation already puts us in a great position by providing us with a great deal of data (effectively unlimited), in the form of (image, truth) pairs. Through a transformation of the high-dimensional response variable, we convert the learning task into a multi-output multi-class classification problem and a multi-output regression problem. We then build a hierarchy architecture of machine learning models (committee of experts) and train different parts of the architecture with specifically designed data sets. In prediction, an unseen OCT image first goes through a classification model to determine its structure (e.g., the number and the types of layers present in the image); then the image is handed to a regression model that is trained specifically for that particular structure to predict the length of the different layers and by doing so reconstruct the ground-truth of the image. We also demonstrate that ideas from Deep Learning can be useful to further improve the performance.
It is worth pointing out that solving the inverse problem automatically improves the imaging depth, since previously the lower half of an OCT image (i.e., greater depth) can be hardly seen but now becomes fully resolved. Interestingly, although OCT signals consisting the lower half of the image are weak, messy, and uninterpretable to human eyes, they still carry enough information which when fed into a well-trained machine learning model spits out precisely the true structure of the object being imaged. This is just another case where Artificial Intelligence (AI) outperforms human. To the best knowledge of the author, this thesis is not only a success but also the first attempt to reconstruct an OCT image at a pixel level. To even give a try on this kind of task, it would require fully annotated OCT images and a lot of them (hundreds or even thousands). This is clearly impossible without a powerful simulation tool like the one developed in this thesis.