3 resultados para Relative complexity
em Boston University Digital Common
Resumo:
National Science Foundation (CCR-998310); Army Research Office (DAAD19-02-1-0058)
Resumo:
We study properties of non-uniform reductions and related completeness notions. We strengthen several results of Hitchcock and Pavan and give a trade-off between the amount of advice needed for a reduction and its honesty on NEXP. We construct an oracle relative to which this trade-off is optimal. We show, in a more systematic study of non-uniform reductions, that among other things non-uniformity can be removed at the cost of more queries. In line with Post's program for complexity theory we connect such 'uniformization' properties to the separation of complexity classes.
Resumo:
For any q > 1, let MOD_q be a quantum gate that determines if the number of 1's in the input is divisible by q. We show that for any q,t > 1, MOD_q is equivalent to MOD_t (up to constant depth). Based on the case q=2, Moore has shown that quantum analogs of AC^(0), ACC[q], and ACC, denoted QAC^(0)_wf, QACC[2], QACC respectively, define the same class of operators, leaving q > 2 as an open question. Our result resolves this question, implying that QAC^(0)_wf = QACC[q] = QACC for all q. We also prove the first upper bounds for QACC in terms of related language classes. We define classes of languages EQACC, NQACC (both for arbitrary complex amplitudes) and BQACC (for rational number amplitudes) and show that they are all contained in TC^(0). To do this, we show that a TC^(0) circuit can keep track of the amplitudes of the state resulting from the application of a QACC operator using a constant width polynomial size tensor sum. In order to accomplish this, we also show that TC^(0) can perform iterated addition and multiplication in certain field extensions.