9 resultados para Relative complexity

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer science and electrical engineering have been the great success story of the twentieth century. The neat modularity and mapping of a language onto circuits has led to robots on Mars, desktop computers and smartphones. But these devices are not yet able to do some of the things that life takes for granted: repair a scratch, reproduce, regenerate, or grow exponentially fast–all while remaining functional.

This thesis explores and develops algorithms, molecular implementations, and theoretical proofs in the context of “active self-assembly” of molecular systems. The long-term vision of active self-assembly is the theoretical and physical implementation of materials that are composed of reconfigurable units with the programmability and adaptability of biology’s numerous molecular machines. En route to this goal, we must first find a way to overcome the memory limitations of molecular systems, and to discover the limits of complexity that can be achieved with individual molecules.

One of the main thrusts in molecular programming is to use computer science as a tool for figuring out what can be achieved. While molecular systems that are Turing-complete have been demonstrated [Winfree, 1996], these systems still cannot achieve some of the feats biology has achieved.

One might think that because a system is Turing-complete, capable of computing “anything,” that it can do any arbitrary task. But while it can simulate any digital computational problem, there are many behaviors that are not “computations” in a classical sense, and cannot be directly implemented. Examples include exponential growth and molecular motion relative to a surface.

Passive self-assembly systems cannot implement these behaviors because (a) molecular motion relative to a surface requires a source of fuel that is external to the system, and (b) passive systems are too slow to assemble exponentially-fast-growing structures. We call these behaviors “energetically incomplete” programmable behaviors. This class of behaviors includes any behavior where a passive physical system simply does not have enough physical energy to perform the specified tasks in the requisite amount of time.

As we will demonstrate and prove, a sufficiently expressive implementation of an “active” molecular self-assembly approach can achieve these behaviors. Using an external source of fuel solves part of the the problem, so the system is not “energetically incomplete.” But the programmable system also needs to have sufficient expressive power to achieve the specified behaviors. Perhaps surprisingly, some of these systems do not even require Turing completeness to be sufficiently expressive.

Building on a large variety of work by other scientists in the fields of DNA nanotechnology, chemistry and reconfigurable robotics, this thesis introduces several research contributions in the context of active self-assembly.

We show that simple primitives such as insertion and deletion are able to generate complex and interesting results such as the growth of a linear polymer in logarithmic time and the ability of a linear polymer to treadmill. To this end we developed a formal model for active-self assembly that is directly implementable with DNA molecules. We show that this model is computationally equivalent to a machine capable of producing strings that are stronger than regular languages and, at most, as strong as context-free grammars. This is a great advance in the theory of active self- assembly as prior models were either entirely theoretical or only implementable in the context of macro-scale robotics.

We developed a chain reaction method for the autonomous exponential growth of a linear DNA polymer. Our method is based on the insertion of molecules into the assembly, which generates two new insertion sites for every initial one employed. The building of a line in logarithmic time is a first step toward building a shape in logarithmic time. We demonstrate the first construction of a synthetic linear polymer that grows exponentially fast via insertion. We show that monomer molecules are converted into the polymer in logarithmic time via spectrofluorimetry and gel electrophoresis experiments. We also demonstrate the division of these polymers via the addition of a single DNA complex that competes with the insertion mechanism. This shows the growth of a population of polymers in logarithmic time. We characterize the DNA insertion mechanism that we utilize in Chapter 4. We experimentally demonstrate that we can control the kinetics of this re- action over at least seven orders of magnitude, by programming the sequences of DNA that initiate the reaction.

In addition, we review co-authored work on programming molecular robots using prescriptive landscapes of DNA origami; this was the first microscopic demonstration of programming a molec- ular robot to walk on a 2-dimensional surface. We developed a snapshot method for imaging these random walking molecular robots and a CAPTCHA-like analysis method for difficult-to-interpret imaging data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cdc48/p97 is an essential, highly abundant hexameric member of the AAA (ATPase associated with various cellular activities) family. It has been linked to a variety of processes throughout the cell but it is best known for its role in the ubiquitin proteasome pathway. In this system it is believed that Cdc48 behaves as a segregase, transducing the chemical energy of ATP hydrolysis into mechanical force to separate ubiquitin-conjugated proteins from their tightly-bound partners.

Current models posit that Cdc48 is linked to its substrates through a variety of adaptor proteins, including a family of seven proteins (13 in humans) that contain a Cdc48-binding UBX domain. As such, due to the complexity of the network of adaptor proteins for which it serves as the hub, Cdc48/p97 has the potential to exert a profound influence on the ubiquitin proteasome pathway. However, the number of known substrates of Cdc48/p97 remains relatively small, and smaller still is the number of substrates that have been linked to a specific UBX domain protein. As such, the goal of this dissertation research has been to discover new substrates and better understand the functions of the Cdc48 network. With this objective in mind, we established a proteomic screen to assemble a catalog of candidate substrate/targets of the Ubx adaptor system.

Here we describe the implementation and optimization of a cutting-edge quantitative mass spectrometry method to measure relative changes in the Saccharomyces cerevisiae proteome. Utilizing this technology, and in order to better understand the breadth of function of Cdc48 and its adaptors, we then performed a global screen to identify accumulating ubiquitin conjugates in cdc48-3 and ubxΔ mutants. In this screen different ubx mutants exhibited reproducible patterns of conjugate accumulation that differed greatly from each other, pointing to various unexpected functional specializations of the individual Ubx proteins.

As validation of our mass spectrometry findings, we then examined in detail the endoplasmic-reticulum bound transcription factor Spt23, which we identified as a putative Ubx2 substrate. In these studies ubx2Δ cells were deficient in processing of Spt23 to its active p90 form, and in localizing p90 to the nucleus. Additionally, consistent with reduced processing of Spt23, ubx2Δ cells demonstrated a defect in expression of their target gene OLE1, a fatty acid desaturase. Overall, this work demonstrates the power of proteomics as a tool to identify new targets of various pathways and reveals Ubx2 as a key regulator lipid membrane biosynthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Terpenes represent about half of known natural products, with terpene synthases catalyzing reactions to increase the complexity of substrates and generate cyclizations of the linear diphosphate substrates, therefore forming rings and stereocenters. With their diverse functionality, terpene synthases may be highly evolvable, with the ability to accept a wide range of non-natural compounds and with high product selectivity. Our hypothesis is that directed evolution of terpene synthases can be used to increase selectivity of the synthase on a specific substrate. In the first part of the work presented herein, three natural terpene synthases, Cop2, BcBOT2, and SSCG_02150, were tested for activity against the natural substrate and a non-natural substrate, called Surrogate 1, and the relative activities on both the natural and non-natural substrates were compared. In the second part of this work, a terpene synthase variant of BcBOT2 that has been evolved for thermostability, was used for directed evolution for increased activity and selectivity on the non-natural substrate referred to as Surrogate 2. Mutations for this evolution were introduced using random mutagenesis, with error prone polymerase chain reactions, and using site-specific saturation mutagenesis, in which an NNK library is designed with a specific active site amino acid targeted for mutation. The mutant enzymes were then screened and selected for enhancement of the desired functionality. Two neutral mutants, 19B7 W367F and 19B7 W118Q, were found to maintain activity on Surrogate 2, as measured by the screen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a toric Del Pezzo surface S, a new instance of mirror symmetry, said relative, is introduced and developed. On the A-model, this relative mirror symmetry conjecture concerns genus 0 relative Gromov-Witten of maximal tangency of S. These correspond, on the B-model, to relative periods of the mirror to S. Furthermore, for S not necessarily toric, two conjectures for BPS state counts are related. It is proven that the integrality of BPS state counts of the total space of the canonical bundle on S implies the integrality for the relative BPS state counts of S. Finally, a prediction of homological mirror symmetry for the open complement is explored. The B-model prediction is calculated in all cases and matches the known A-model computation for the projective plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The negative impacts of ambient aerosol particles, or particulate matter (PM), on human health and climate are well recognized. However, owing to the complexity of aerosol particle formation and chemical evolution, emissions control strategies remain difficult to develop in a cost effective manner. In this work, three studies are presented to address several key issues currently stymieing California's efforts to continue improving its air quality.

Gas-phase organic mass (GPOM) and CO emission factors are used in conjunction with measured enhancements in oxygenated organic aerosol (OOA) relative to CO to quantify the significant lack of closure between expected and observed organic aerosol concentrations attributable to fossil-fuel emissions. Two possible conclusions emerge from the analysis to yield consistency with the ambient organic data: (1) vehicular emissions are not a dominant source of anthropogenic fossil SOA in the Los Angeles Basin, or (2) the ambient SOA mass yields used to determine the SOA formation potential of vehicular emissions are substantially higher than those derived from laboratory chamber studies. Additional laboratory chamber studies confirm that, owing to vapor-phase wall loss, the SOA mass yields currently used in virtually all 3D chemical transport models are biased low by as much as a factor of 4. Furthermore, predictions from the Statistical Oxidation Model suggest that this bias could be as high as a factor of 8 if the influence of the chamber walls could be removed entirely.

Once vapor-phase wall loss has been accounted for in a new suite of laboratory chamber experiments, the SOA parameterizations within atmospheric chemical transport models should also be updated. To address the numerical challenges of implementing the next generation of SOA models in atmospheric chemical transport models, a novel mathematical framework, termed the Moment Method, is designed and presented. Assessment of the Moment Method strengths and weaknesses provide valuable insight that can guide future development of SOA modules for atmospheric CTMs.

Finally, regional inorganic aerosol formation and evolution is investigated via detailed comparison of predictions from the Community Multiscale Air Quality (CMAQ version 4.7.1) model against a suite of airborne and ground-based meteorological measurements, gas- and aerosol-phase inorganic measurements, and black carbon (BC) measurements over Southern California during the CalNex field campaign in May/June 2010. Results suggests that continuing to target sulfur emissions with the hopes of reducing ambient PM concentrations may not the most effective strategy for Southern California. Instead, targeting dairy emissions is likely to be an effective strategy for substantially reducing ammonium nitrate concentrations in the eastern part of the Los Angeles Basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the quest for a descriptive theory of decision-making, the rational actor model in economics imposes rather unrealistic expectations and abilities on human decision makers. The further we move from idealized scenarios, such as perfectly competitive markets, and ambitiously extend the reach of the theory to describe everyday decision making situations, the less sense these assumptions make. Behavioural economics has instead proposed models based on assumptions that are more psychologically realistic, with the aim of gaining more precision and descriptive power. Increased psychological realism, however, comes at the cost of a greater number of parameters and model complexity. Now there are a plethora of models, based on different assumptions, applicable in differing contextual settings, and selecting the right model to use tends to be an ad-hoc process. In this thesis, we develop optimal experimental design methods and evaluate different behavioral theories against evidence from lab and field experiments.

We look at evidence from controlled laboratory experiments. Subjects are presented with choices between monetary gambles or lotteries. Different decision-making theories evaluate the choices differently and would make distinct predictions about the subjects' choices. Theories whose predictions are inconsistent with the actual choices can be systematically eliminated. Behavioural theories can have multiple parameters requiring complex experimental designs with a very large number of possible choice tests. This imposes computational and economic constraints on using classical experimental design methods. We develop a methodology of adaptive tests: Bayesian Rapid Optimal Adaptive Designs (BROAD) that sequentially chooses the "most informative" test at each stage, and based on the response updates its posterior beliefs over the theories, which informs the next most informative test to run. BROAD utilizes the Equivalent Class Edge Cutting (EC2) criteria to select tests. We prove that the EC2 criteria is adaptively submodular, which allows us to prove theoretical guarantees against the Bayes-optimal testing sequence even in the presence of noisy responses. In simulated ground-truth experiments, we find that the EC2 criteria recovers the true hypotheses with significantly fewer tests than more widely used criteria such as Information Gain and Generalized Binary Search. We show, theoretically as well as experimentally, that surprisingly these popular criteria can perform poorly in the presence of noise, or subject errors. Furthermore, we use the adaptive submodular property of EC2 to implement an accelerated greedy version of BROAD which leads to orders of magnitude speedup over other methods.

We use BROAD to perform two experiments. First, we compare the main classes of theories for decision-making under risk, namely: expected value, prospect theory, constant relative risk aversion (CRRA) and moments models. Subjects are given an initial endowment, and sequentially presented choices between two lotteries, with the possibility of losses. The lotteries are selected using BROAD, and 57 subjects from Caltech and UCLA are incentivized by randomly realizing one of the lotteries chosen. Aggregate posterior probabilities over the theories show limited evidence in favour of CRRA and moments' models. Classifying the subjects into types showed that most subjects are described by prospect theory, followed by expected value. Adaptive experimental design raises the possibility that subjects could engage in strategic manipulation, i.e. subjects could mask their true preferences and choose differently in order to obtain more favourable tests in later rounds thereby increasing their payoffs. We pay close attention to this problem; strategic manipulation is ruled out since it is infeasible in practice, and also since we do not find any signatures of it in our data.

In the second experiment, we compare the main theories of time preference: exponential discounting, hyperbolic discounting, "present bias" models: quasi-hyperbolic (α, β) discounting and fixed cost discounting, and generalized-hyperbolic discounting. 40 subjects from UCLA were given choices between 2 options: a smaller but more immediate payoff versus a larger but later payoff. We found very limited evidence for present bias models and hyperbolic discounting, and most subjects were classified as generalized hyperbolic discounting types, followed by exponential discounting.

In these models the passage of time is linear. We instead consider a psychological model where the perception of time is subjective. We prove that when the biological (subjective) time is positively dependent, it gives rise to hyperbolic discounting and temporal choice inconsistency.

We also test the predictions of behavioral theories in the "wild". We pay attention to prospect theory, which emerged as the dominant theory in our lab experiments of risky choice. Loss aversion and reference dependence predicts that consumers will behave in a uniquely distinct way than the standard rational model predicts. Specifically, loss aversion predicts that when an item is being offered at a discount, the demand for it will be greater than that explained by its price elasticity. Even more importantly, when the item is no longer discounted, demand for its close substitute would increase excessively. We tested this prediction using a discrete choice model with loss-averse utility function on data from a large eCommerce retailer. Not only did we identify loss aversion, but we also found that the effect decreased with consumers' experience. We outline the policy implications that consumer loss aversion entails, and strategies for competitive pricing.

In future work, BROAD can be widely applicable for testing different behavioural models, e.g. in social preference and game theory, and in different contextual settings. Additional measurements beyond choice data, including biological measurements such as skin conductance, can be used to more rapidly eliminate hypothesis and speed up model comparison. Discrete choice models also provide a framework for testing behavioural models with field data, and encourage combined lab-field experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elements with even atomic number (Z) in the interval 50 ≤ Z ≤ 58 have been resolved in the cosmic radiation using the Heavy Nuclei Experiment on the HEAO-3 satellite. Their relative abundances have been compared with the results expected from pure r-process material, pure s-process material, and solar system material, both with and without a modification due to possible first ionization potential effects. Such effects may be the result of the preferential acceleration, and hence enhancement in the cosmic rays, or those elements having low first ionization potentials. We find that our measurements are inconsistent with pure r-process material at the greater than 98% confidence level whether or not the first ionization potential adjustments are made.

In addition, we have compared our results with mixtures having varying ratios of pure r-process material to pure s-process material. We find that, if no first ionization potential effects are included,

(r/s)CRS/(r/s)SS = 0.20+0.18-0.14

where CRS refers to the cosmic ray source and SS refers to the solar system, consistent with having an almost pure s-process source. If the first ionization potential adjustments are applied

(r/s)CRS/(r/s)SS = 1.5+1.1-0.7

consistent with a solar system mixture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complexity in the earthquake rupture process can result from many factors. This study investigates the origin of such complexity by examining several recent, large earthquakes in detail. In each case the local tectonic environment plays an important role in understanding the source of the complexity.

Several large shallow earthquakes (Ms > 7.0) along the Middle American Trench have similarities and differences between them that may lead to a better understanding of fracture and subduction processes. They are predominantly thrust events consistent with the known subduction of the Cocos plate beneath N. America. Two events occurring along this subduction zone close to triple junctions show considerable complexity. This may be attributable to a more heterogeneous stress environment in these regions and as such has implications for other subduction zone boundaries.

An event which looks complex but is actually rather simple is the 1978 Bermuda earthquake (Ms ~ 6). It is located predominantly in the mantle. Its mechanism is one of pure thrust faulting with a strike N 20°W and dip 42°NE. Its apparent complexity is caused by local crustal structure. This is an important event in terms of understanding and estimating seismic hazard on the eastern seaboard of N. America.

A study of several large strike-slip continental earthquakes identifies characteristics which are common to them and may be useful in determining what to expect from the next great earthquake on the San Andreas fault. The events are the 1976 Guatemala earthquake on the Motagua fault and two events on the Anatolian fault in Turkey (the 1967, Mudurnu Valley and 1976, E. Turkey events). An attempt to model the complex P-waveforms of these events results in good synthetic fits for the Guatemala and Mudurnu Valley events. However, the E. Turkey event proves to be too complex as it may have associated thrust or normal faulting. Several individual sources occurring at intervals of between 5 and 20 seconds characterize the Guatemala and Mudurnu Valley events. The maximum size of an individual source appears to be bounded at about 5 x 1026 dyne-cm. A detailed source study including directivity is performed on the Guatemala event. The source time history of the Mudurnu Valley event illustrates its significance in modeling strong ground motion in the near field. The complex source time series of the 1967 event produces amplitudes greater by a factor of 2.5 than a uniform model scaled to the same size for a station 20 km from the fault.

Three large and important earthquakes demonstrate an important type of complexity --- multiple-fault complexity. The first, the 1976 Philippine earthquake, an oblique thrust event, represents the first seismological evidence for a northeast dipping subduction zone beneath the island of Mindanao. A large event, following the mainshock by 12 hours, occurred outside the aftershock area and apparently resulted from motion on a subsidiary fault since the event had a strike-slip mechanism.

An aftershock of the great 1960 Chilean earthquake on June 6, 1960, proved to be an interesting discovery. It appears to be a large strike-slip event at the main rupture's southern boundary. It most likely occurred on the landward extension of the Chile Rise transform fault, in the subducting plate. The results for this event suggest that a small event triggered a series of slow events; the duration of the whole sequence being longer than 1 hour. This is indeed a "slow earthquake".

Perhaps one of the most complex of events is the recent Tangshan, China event. It began as a large strike-slip event. Within several seconds of the mainshock it may have triggered thrust faulting to the south of the epicenter. There is no doubt, however, that it triggered a large oblique normal event to the northeast, 15 hours after the mainshock. This event certainly contributed to the great loss of life-sustained as a result of the Tangshan earthquake sequence.

What has been learned from these studies has been applied to predict what one might expect from the next great earthquake on the San Andreas. The expectation from this study is that such an event would be a large complex event, not unlike, but perhaps larger than, the Guatemala or Mudurnu Valley events. That is to say, it will most likely consist of a series of individual events in sequence. It is also quite possible that the event could trigger associated faulting on neighboring fault systems such as those occurring in the Transverse Ranges. This has important bearing on the earthquake hazard estimation for the region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photovoltaic energy conversion represents a economically viable technology for realizing collection of the largest energy resource known to the Earth -- the sun. Energy conversion efficiency is the most leveraging factor in the price of energy derived from this process. This thesis focuses on two routes for high efficiency, low cost devices: first, to use Group IV semiconductor alloy wire array bottom cells and epitaxially grown Group III-V compound semiconductor alloy top cells in a tandem configuration, and second, GaP growth on planar Si for heterojunction and tandem cell applications.

Metal catalyzed vapor-liquid-solid grown microwire arrays are an intriguing alternative for wafer-free Si and SiGe materials which can be removed as flexible membranes. Selected area Cu-catalyzed vapor-liquid solid growth of SiGe microwires is achieved using chlorosilane and chlorogermane precursors. The composition can be tuned up to 12% Ge with a simultaneous decrease in the growth rate from 7 to 1 μm/min-1. Significant changes to the morphology were observed, including tapering and faceting on the sidewalls and along the lengths of the wires. Characterization of axial and radial cross sections with transmission electron microscopy revealed no evidence of defects at facet corners and edges, and the tapering is shown to be due to in-situ removal of catalyst material during growth. X-ray diffraction and transmission electron microscopy reveal a Ge-rich crystal at the tip of the wires, strongly suggesting that the Ge incorporation is limited by the crystallization rate.

Tandem Ga1-xInxP/Si microwire array solar cells are a route towards a high efficiency, low cost, flexible, wafer-free solar technology. Realizing tandem Group III-V compound semiconductor/Si wire array devices requires optimization of materials growth and device performance. GaP and Ga1-xInxP layers were grown heteroepitaxially with metalorganic chemical vapor deposition on Si microwire array substrates. The layer morphology and crystalline quality have been studied with scanning electron microscopy and transmission electron microscopy, and they provide a baseline for the growth and characterization of a full device stack. Ultimately, the complexity of the substrates and the prevalence of defects resulted in material without detectable photoluminescence, unsuitable for optoelectronic applications.

Coupled full-field optical and device physics simulations of a Ga0.51In0.49P/Si wire array tandem are used to predict device performance. A 500 nm thick, highly doped "buffer" layer between the bottom cell and tunnel junction is assumed to harbor a high density of lattice mismatch and heteroepitaxial defects. Under simulated AM1.5G illumination, the device structure explored in this work has a simulated efficiency of 23.84% with realistic top cell SRH lifetimes and surface recombination velocities. The relative insensitivity to surface recombination is likely due to optical generation further away from the free surfaces and interfaces of the device structure.

Finally, GaP has been grown free of antiphase domains on Si (112) oriented substrates using metalorganic chemical vapor deposition. Low temperature pulsed nucleation is followed by high temperature continuous growth, yielding smooth, specular thin films. Atomic force microscopy topography mapping showed very smooth surfaces (4-6 Å RMS roughness) with small depressions in the surface. Thin films (~ 50 nm) were pseudomorphic, as confirmed by high resolution x-ray diffraction reciprocal space mapping, and 200 nm thick films showed full relaxation. Transmission electron microscopy showed no evidence of antiphase domain formation, but there is a population of microtwin and stacking fault defects.