2 resultados para Photographic surveying.
em Boston University Digital Common
Resumo:
The objective of unicast routing is to find a path from a source to a destination. Conventional routing has been used mainly to provide connectivity. It lacks the ability to provide any kind of service guarantees and smart usage of network resources. Improving performance is possible by being aware of both traffic characteristics and current available resources. This paper surveys a range of routing solutions, which can be categorized depending on the degree of the awareness of the algorithm: (1) QoS/Constraint-based routing solutions are aware of traffic requirements of individual connection requests; (2) Traffic-aware routing solutions assume knowledge of the location of communicating ingress-egress pairs and possibly the traffic demands among them; (3) Routing solutions that are both QoS-aware as (1) and traffic-aware as (2); (4) Best-effort solutions are oblivious to both traffic and QoS requirements, but are adaptive only to current resource availability. The best performance can be achieved by having all possible knowledge so that while finding a path for an individual flow, one can make a smart choice among feasible paths to increase the chances of supporting future requests. However, this usually comes at the cost of increased complexity and decreased scalability. In this paper, we discuss such cost-performance tradeoffs by surveying proposed heuristic solutions and hybrid approaches.
Resumo:
A neural model is proposed of how laminar interactions in the visual cortex may learn and recognize object texture and form boundaries. The model brings together five interacting processes: region-based texture classification, contour-based boundary grouping, surface filling-in, spatial attention, and object attention. The model shows how form boundaries can determine regions in which surface filling-in occurs; how surface filling-in interacts with spatial attention to generate a form-fitting distribution of spatial attention, or attentional shroud; how the strongest shroud can inhibit weaker shrouds; and how the winning shroud regulates learning of texture categories, and thus the allocation of object attention. The model can discriminate abutted textures with blurred boundaries and is sensitive to texture boundary attributes like discontinuities in orientation and texture flow curvature as well as to relative orientations of texture elements. The model quantitatively fits a large set of human psychophysical data on orientation-based textures. Object boundar output of the model is compared to computer vision algorithms using a set of human segmented photographic images. The model classifies textures and suppresses noise using a multiple scale oriented filterbank and a distributed Adaptive Resonance Theory (dART) classifier. The matched signal between the bottom-up texture inputs and top-down learned texture categories is utilized by oriented competitive and cooperative grouping processes to generate texture boundaries that control surface filling-in and spatial attention. Topdown modulatory attentional feedback from boundary and surface representations to early filtering stages results in enhanced texture boundaries and more efficient learning of texture within attended surface regions. Surface-based attention also provides a self-supervising training signal for learning new textures. Importance of the surface-based attentional feedback in texture learning and classification is tested using a set of textured images from the Brodatz micro-texture album. Benchmark studies vary from 95.1% to 98.6% with attention, and from 90.6% to 93.2% without attention.