10 resultados para Overlays
em Boston University Digital Common
Resumo:
This paper proposes the use of in-network caches (which we call Angels) to reduce the Minimum Distribution Time (MDT) of a file from a seeder – a node that possesses the file – to a set of leechers – nodes who are interested in downloading the file. An Angel is not a leecher in the sense that it is not interested in receiving the entire file, but rather it is interested in minimizing the MDT to all leechers, and as such uses its storage and up/down-link capacity to cache and forward parts of the file to other peers. We extend the analytical results by Kumar and Ross [1] to account for the presence of angels by deriving a new lower bound for the MDT. We show that this newly derived lower bound is tight by proposing a distribution strategy under assumptions of a fluid model. We present a GroupTree heuristic that addresses the impracticalities of the fluid model. We evaluate our designs through simulations that show that our Group-Tree heuristic outperforms other heuristics, that it scales well with the increase of the number of leechers, and that it closely approaches the optimal theoretical bounds.
Resumo:
This thesis proposes the use of in-network caches (which we call Angels) to reduce the Minimum Distribution Time (MDT) of a file from a seeder – a node that possesses the file – to a set of leechers – nodes who are interested in downloading the file. An Angel is not a leecher in the sense that it is not interested in receiving the entire file, but rather it is interested in minimizing the MDT to all leechers, and as such uses its storage and up/down-link capacity to cache and forward parts of the file to other peers. We extend the analytical results by Kumar and Ross (Kumar and Ross, 2006) to account for the presence of angels by deriving a new lower bound for the MDT. We show that this newly derived lower bound is tight by proposing a distribution strategy under assumptions of a fluid model. We present a GroupTree heuristic that addresses the impracticalities of the fluid model. We evaluate our designs through simulations that show that our GroupTree heuristic outperforms other heuristics, that it scales well with the increase of the number of leechers, and that it closely approaches the optimal theoretical bounds.
Resumo:
Research on the construction of logical overlay networks has gained significance in recent times. This is partly due to work on peer-to-peer (P2P) systems for locating and retrieving distributed data objects, and also scalable content distribution using end-system multicast techniques. However, there are emerging applications that require the real-time transport of data from various sources to potentially many thousands of subscribers, each having their own quality-of-service (QoS) constraints. This paper primarily focuses on the properties of two popular topologies found in interconnection networks, namely k-ary n-cubes and de Bruijn graphs. The regular structure of these graph topologies makes them easier to analyze and determine possible routes for real-time data than complete or irregular graphs. We show how these overlay topologies compare in their ability to deliver data according to the QoS constraints of many subscribers, each receiving data from specific publishing hosts. Comparisons are drawn on the ability of each topology to route data in the presence of dynamic system effects, due to end-hosts joining and departing the system. Finally, experimental results show the service guarantees and physical link stress resulting from efficient multicast trees constructed over both kinds of overlay networks.
Resumo:
We consider the problem of performing topological optimizations of distributed hash tables. Such hash tables include Chord and Tapestry and are a popular building block for distributed applications. Optimizing topologies over one dimensional hash spaces is particularly difficult as the higher dimensionality of the underlying network makes close fits unlikely. Instead, current schemes are limited to heuristically performing local optimizations finding the best of small random set of peers. We propose a new class of topology optimizations based on the existence of clusters of close overlay members within the underlying network. By constructing additional overlays for each cluster, a significant portion of the search procedure can be performed within the local cluster with a corresponding reduction in the search time. Finally, we discuss the effects of these additional overlays on spatial locality and other load balancing scheme.
Resumo:
A foundational issue underlying many overlay network applications ranging from routing to P2P file sharing is that of connectivity management, i.e., folding new arrivals into the existing mesh and re-wiring to cope with changing network conditions. Previous work has considered the problem from two perspectives: devising practical heuristics for specific applications designed to work well in real deployments, and providing abstractions for the underlying problem that are tractable to address via theoretical analyses, especially game-theoretic analysis. Our work unifies these two thrusts first by distilling insights gleaned from clean theoretical models, notably that under natural resource constraints, selfish players can select neighbors so as to efficiently reach near-equilibria that also provide high global performance. Using Egoist, a prototype overlay routing system we implemented on PlanetLab, we demonstrate that our neighbor selection primitives significantly outperform existing heuristics on a variety of performance metrics; that Egoist is competitive with an optimal, but unscalable full-mesh approach; and that it remains highly effective under significant churn. We also describe variants of Egoist's current design that would enable it to scale to overlays of much larger scale and allow it to cater effectively to applications, such as P2P file sharing in unstructured overlays, based on the use of primitives such as scoped-flooding rather than routing.
Resumo:
In an n-way broadcast application each one of n overlay nodes wants to push its own distinct large data file to all other n-1 destinations as well as download their respective data files. BitTorrent-like swarming protocols are ideal choices for handling such massive data volume transfers. The original BitTorrent targets one-to-many broadcasts of a single file to a very large number of receivers and thus, by necessity, employs an almost random overlay topology. n-way broadcast applications on the other hand, owing to their inherent n-squared nature, are realizable only in small to medium scale networks. In this paper, we show that we can leverage this scale constraint to construct optimized overlay topologies that take into consideration the end-to-end characteristics of the network and as a consequence deliver far superior performance compared to random and myopic (local) approaches. We present the Max-Min and MaxSum peer-selection policies used by individual nodes to select their neighbors. The first one strives to maximize the available bandwidth to the slowest destination, while the second maximizes the aggregate output rate. We design a swarming protocol suitable for n-way broadcast and operate it on top of overlay graphs formed by nodes that employ Max-Min or Max-Sum policies. Using trace-driven simulation and measurements from a PlanetLab prototype implementation, we demonstrate that the performance of swarming on top of our constructed topologies is far superior to the performance of random and myopic overlays. Moreover, we show how to modify our swarming protocol to allow it to accommodate selfish nodes.
Resumo:
Overlay networks have been used for adding and enhancing functionality to the end-users without requiring modifications in the Internet core mechanisms. Overlay networks have been used for a variety of popular applications including routing, file sharing, content distribution, and server deployment. Previous work has focused on devising practical neighbor selection heuristics under the assumption that users conform to a specific wiring protocol. This is not a valid assumption in highly decentralized systems like overlay networks. Overlay users may act selfishly and deviate from the default wiring protocols by utilizing knowledge they have about the network when selecting neighbors to improve the performance they receive from the overlay. This thesis goes against the conventional thinking that overlay users conform to a specific protocol. The contributions of this thesis are threefold. It provides a systematic evaluation of the design space of selfish neighbor selection strategies in real overlays, evaluates the performance of overlay networks that consist of users that select their neighbors selfishly, and examines the implications of selfish neighbor and server selection to overlay protocol design and service provisioning respectively. This thesis develops a game-theoretic framework that provides a unified approach to modeling Selfish Neighbor Selection (SNS) wiring procedures on behalf of selfish users. The model is general, and takes into consideration costs reflecting network latency and user preference profiles, the inherent directionality in overlay maintenance protocols, and connectivity constraints imposed on the system designer. Within this framework the notion of user’s "best response" wiring strategy is formalized as a k-median problem on asymmetric distance and is used to obtain overlay structures in which no node can re-wire to improve the performance it receives from the overlay. Evaluation results presented in this thesis indicate that selfish users can reap substantial performance benefits when connecting to overlay networks composed of non-selfish users. In addition, in overlays that are dominated by selfish users, the resulting stable wirings are optimized to such great extent that even non-selfish newcomers can extract near-optimal performance through naïve wiring strategies. To capitalize on the performance advantages of optimal neighbor selection strategies and the emergent global wirings that result, this thesis presents EGOIST: an SNS-inspired overlay network creation and maintenance routing system. Through an extensive measurement study on the deployed prototype, results presented in this thesis show that EGOIST’s neighbor selection primitives outperform existing heuristics on a variety of performance metrics, including delay, available bandwidth, and node utilization. Moreover, these results demonstrate that EGOIST is competitive with an optimal but unscalable full-mesh approach, remains highly effective under significant churn, is robust to cheating, and incurs minimal overheads. This thesis also studies selfish neighbor selection strategies for swarming applications. The main focus is on n-way broadcast applications where each of n overlay user wants to push its own distinct file to all other destinations as well as download their respective data files. Results presented in this thesis demonstrate that the performance of our swarming protocol for n-way broadcast on top of overlays of selfish users is far superior than the performance on top of existing overlays. In the context of service provisioning, this thesis examines the use of distributed approaches that enable a provider to determine the number and location of servers for optimal delivery of content or services to its selfish end-users. To leverage recent advances in virtualization technologies, this thesis develops and evaluates a distributed protocol to migrate servers based on end-users demand and only on local topological knowledge. Results under a range of network topologies and workloads suggest that the performance of the distributed deployment is comparable to that of the optimal but unscalable centralized deployment.
Resumo:
The initial phase in a content distribution (file sharing) scenario is a delicate phase due to the lack of global knowledge and the dynamics of the overlay. An unwise distribution of the pieces in this phase can cause delays in reaching steady state, thus increasing file download times. We devise a scheduling algorithm at the seed (source peer with full content), based on a proportional fair approach, and we implement it on a real file sharing client [1]. In dynamic overlays, our solution improves up to 25% the average downloading time of a standard protocol ala BitTorrent.
Resumo:
In a typical overlay network for routing or content sharing, each node must select a fixed number of immediate overlay neighbors for routing traffic or content queries. A selfish node entering such a network would select neighbors so as to minimize the weighted sum of expected access costs to all its destinations. Previous work on selfish neighbor selection has built intuition with simple models where edges are undirected, access costs are modeled by hop-counts, and nodes have potentially unbounded degrees. However, in practice, important constraints not captured by these models lead to richer games with substantively and fundamentally different outcomes. Our work models neighbor selection as a game involving directed links, constraints on the number of allowed neighbors, and costs reflecting both network latency and node preference. We express a node's "best response" wiring strategy as a k-median problem on asymmetric distance, and use this formulation to obtain pure Nash equilibria. We experimentally examine the properties of such stable wirings on synthetic topologies, as well as on real topologies and maps constructed from PlanetLab and AS-level Internet measurements. Our results indicate that selfish nodes can reap substantial performance benefits when connecting to overlay networks composed of non-selfish nodes. On the other hand, in overlays that are dominated by selfish nodes, the resulting stable wirings are optimized to such great extent that even non-selfish newcomers can extract near-optimal performance through naive wiring strategies.
Resumo:
Emerging configurable infrastructures such as large-scale overlays and grids, distributed testbeds, and sensor networks comprise diverse sets of available computing resources (e.g., CPU and OS capabilities and memory constraints) and network conditions (e.g., link delay, bandwidth, loss rate, and jitter) whose characteristics are both complex and time-varying. At the same time, distributed applications to be deployed on these infrastructures exhibit increasingly complex constraints and requirements on resources they wish to utilize. Examples include selecting nodes and links to schedule an overlay multicast file transfer across the Grid, or embedding a network experiment with specific resource constraints in a distributed testbed such as PlanetLab. Thus, a common problem facing the efficient deployment of distributed applications on these infrastructures is that of "mapping" application-level requirements onto the network in such a manner that the requirements of the application are realized, assuming that the underlying characteristics of the network are known. We refer to this problem as the network embedding problem. In this paper, we propose a new approach to tackle this combinatorially-hard problem. Thanks to a number of heuristics, our approach greatly improves performance and scalability over previously existing techniques. It does so by pruning large portions of the search space without overlooking any valid embedding. We present a construction that allows a compact representation of candidate embeddings, which is maintained by carefully controlling the order via which candidate mappings are inserted and invalid mappings are removed. We present an implementation of our proposed technique, which we call NETEMBED – a service that identify feasible mappings of a virtual network configuration (the query network) to an existing real infrastructure or testbed (the hosting network). We present results of extensive performance evaluation experiments of NETEMBED using several combinations of real and synthetic network topologies. Our results show that our NETEMBED service is quite effective in identifying one (or all) possible embeddings for quite sizable queries and hosting networks – much larger than what any of the existing techniques or services are able to handle.