12 resultados para Motion-based driving simulator

em Boston University Digital Common


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nonrigid motion can be described as morphing or blending between extremal shapes, e.g., heart motion can be described as transitioning between the systole and diastole states. Using physically-based modeling techniques, shape similarity can be measured in terms of forces and strain. This provides a physically-based coordinate system in which motion is characterized in terms of physical similarity to a set of extremal shapes. Having such a low-dimensional characterization of nonrigid motion allows for the recognition and the comparison of different types of nonrigid motion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Intelligent assistive technology can greatly improve the daily lives of people with severe paralysis, who have limited communication abilities. People with motion impairments often prefer camera-based communication interfaces, because these are customizable, comfortable, and do not require user-borne accessories that could draw attention to their disability. We present an overview of assistive software that we specifically designed for camera-based interfaces such as the Camera Mouse, which serves as a mouse-replacement input system. The applications include software for text-entry, web browsing, image editing, animation, and music therapy. Using this software, people with severe motion impairments can communicate with friends and family and have a medium to explore their creativity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new approach is proposed for clustering time-series data. The approach can be used to discover groupings of similar object motions that were observed in a video collection. A finite mixture of hidden Markov models (HMMs) is fitted to the motion data using the expectation-maximization (EM) framework. Previous approaches for HMM-based clustering employ a k-means formulation, where each sequence is assigned to only a single HMM. In contrast, the formulation presented in this paper allows each sequence to belong to more than a single HMM with some probability, and the hard decision about the sequence class membership can be deferred until a later time when such a decision is required. Experiments with simulated data demonstrate the benefit of using this EM-based approach when there is more "overlap" in the processes generating the data. Experiments with real data show the promising potential of HMM-based motion clustering in a number of applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This technical report presents a combined solution for two problems, one: tracking objects in 3D space and estimating their trajectories and second: computing the similarity between previously estimated trajectories and clustering them using the similarities that we just computed. For the first part, trajectories are estimated using an EKF formulation that will provide the 3D trajectory up to a constant. To improve accuracy, when occlusions appear, multiple hypotheses are followed. For the second problem we compute the distances between trajectories using a similarity based on LCSS formulation. Similarities are computed between projections of trajectories on coordinate axes. Finally we group trajectories together based on previously computed distances, using a clustering algorithm. To check the validity of our approach, several experiments using real data were performed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A system is described that tracks moving objects in a video dataset so as to extract a representation of the objects' 3D trajectories. The system then finds hierarchical clusters of similar trajectories in the video dataset. Objects' motion trajectories are extracted via an EKF formulation that provides each object's 3D trajectory up to a constant factor. To increase accuracy when occlusions occur, multiple tracking hypotheses are followed. For trajectory-based clustering and retrieval, a modified version of edit distance, called longest common subsequence (LCSS) is employed. Similarities are computed between projections of trajectories on coordinate axes. Trajectories are grouped based, using an agglomerative clustering algorithm. To check the validity of the approach, experiments using real data were performed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A vision based technique for non-rigid control is presented that can be used for animation and video game applications. The user grasps a soft, squishable object in front of a camera that can be moved and deformed in order to specify motion. Active Blobs, a non-rigid tracking technique is used to recover the position, rotation and non-rigid deformations of the object. The resulting transformations can be applied to a texture mapped mesh, thus allowing the user to control it interactively. Our use of texture mapping hardware allows us to make the system responsive enough for interactive animation and video game character control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method for deformable shape detection and recognition is described. Deformable shape templates are used to partition the image into a globally consistent interpretation, determined in part by the minimum description length principle. Statistical shape models enforce the prior probabilities on global, parametric deformations for each object class. Once trained, the system autonomously segments deformed shapes from the background, while not merging them with adjacent objects or shadows. The formulation can be used to group image regions based on any image homogeneity predicate; e.g., texture, color, or motion. The recovered shape models can be used directly in object recognition. Experiments with color imagery are reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of different classification approaches is evaluated using a view-based approach for motion representation. The view-based approach uses computer vision and image processing techniques to register and process the video sequence. Two motion representations called Motion Energy Images and Motion History Image are then constructed. These representations collapse the temporal component in a way that no explicit temporal analysis or sequence matching is needed. Statistical descriptions are then computed using moment-based features and dimensionality reduction techniques. For these tests, we used 7 Hu moments, which are invariant to scale and translation. Principal Components Analysis is used to reduce the dimensionality of this representation. The system is trained using different subjects performing a set of examples of every action to be recognized. Given these samples, K-nearest neighbor, Gaussian, and Gaussian mixture classifiers are used to recognize new actions. Experiments are conducted using instances of eight human actions (i.e., eight classes) performed by seven different subjects. Comparisons in the performance among these classifiers under different conditions are analyzed and reported. Our main goals are to test this dimensionality-reduced representation of actions, and more importantly to use this representation to compare the advantages of different classification approaches in this recognition task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An improved technique for 3D head tracking under varying illumination conditions is proposed. The head is modeled as a texture mapped cylinder. Tracking is formulated as an image registration problem in the cylinder's texture map image. The resulting dynamic texture map provides a stabilized view of the face that can be used as input to many existing 2D techniques for face recognition, facial expressions analysis, lip reading, and eye tracking. To solve the registration problem in the presence of lighting variation and head motion, the residual error of registration is modeled as a linear combination of texture warping templates and orthogonal illumination templates. Fast and stable on-line tracking is achieved via regularized, weighted least squares minimization of the registration error. The regularization term tends to limit potential ambiguities that arise in the warping and illumination templates. It enables stable tracking over extended sequences. Tracking does not require a precise initial fit of the model; the system is initialized automatically using a simple 2D face detector. The only assumption is that the target is facing the camera in the first frame of the sequence. The formulation is tailored to take advantage of texture mapping hardware available in many workstations, PC's, and game consoles. The non-optimized implementation runs at about 15 frames per second on a SGI O2 graphic workstation. Extensive experiments evaluating the effectiveness of the formulation are reported. The sensitivity of the technique to illumination, regularization parameters, errors in the initial positioning and internal camera parameters are analyzed. Examples and applications of tracking are reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Log-polar image architectures, motivated by the structure of the human visual field, have long been investigated in computer vision for use in estimating motion parameters from an optical flow vector field. Practical problems with this approach have been: (i) dependence on assumed alignment of the visual and motion axes; (ii) sensitivity to occlusion form moving and stationary objects in the central visual field, where much of the numerical sensitivity is concentrated; and (iii) inaccuracy of the log-polar architecture (which is an approximation to the central 20°) for wide-field biological vision. In the present paper, we show that an algorithm based on generalization of the log-polar architecture; termed the log-dipolar sensor, provides a large improvement in performance relative to the usual log-polar sampling. Specifically, our algorithm: (i) is tolerant of large misalignmnet of the optical and motion axes; (ii) is insensitive to significant occlusion by objects of unknown motion; and (iii) represents a more correct analogy to the wide-field structure of human vision. Using the Helmholtz-Hodge decomposition to estimate the optical flow vector field on a log-dipolar sensor, we demonstrate these advantages, using synthetic optical flow maps as well as natural image sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A biomechanical model of the human oculomotor plant kinematics in 3-D as a function of muscle length changes is presented. It can represent a range of alternative interpretations of the data as a function of one parameter. The model is free from such deficits as singularities and the nesting of axes found in alternative formulations such as the spherical wrist (Paul, l98l). The equations of motion are defined on a quaternion based representation of eye rotations and are compact atnd computationally efficient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article describes neural network models for adaptive control of arm movement trajectories during visually guided reaching and, more generally, a framework for unsupervised real-time error-based learning. The models clarify how a child, or untrained robot, can learn to reach for objects that it sees. Piaget has provided basic insights with his concept of a circular reaction: As an infant makes internally generated movements of its hand, the eyes automatically follow this motion. A transformation is learned between the visual representation of hand position and the motor representation of hand position. Learning of this transformation eventually enables the child to accurately reach for visually detected targets. Grossberg and Kuperstein have shown how the eye movement system can use visual error signals to correct movement parameters via cerebellar learning. Here it is shown how endogenously generated arm movements lead to adaptive tuning of arm control parameters. These movements also activate the target position representations that are used to learn the visuo-motor transformation that controls visually guided reaching. The AVITE model presented here is an adaptive neural circuit based on the Vector Integration to Endpoint (VITE) model for arm and speech trajectory generation of Bullock and Grossberg. In the VITE model, a Target Position Command (TPC) represents the location of the desired target. The Present Position Command (PPC) encodes the present hand-arm configuration. The Difference Vector (DV) population continuously.computes the difference between the PPC and the TPC. A speed-controlling GO signal multiplies DV output. The PPC integrates the (DV)·(GO) product and generates an outflow command to the arm. Integration at the PPC continues at a rate dependent on GO signal size until the DV reaches zero, at which time the PPC equals the TPC. The AVITE model explains how self-consistent TPC and PPC coordinates are autonomously generated and learned. Learning of AVITE parameters is regulated by activation of a self-regulating Endogenous Random Generator (ERG) of training vectors. Each vector is integrated at the PPC, giving rise to a movement command. The generation of each vector induces a complementary postural phase during which ERG output stops and learning occurs. Then a new vector is generated and the cycle is repeated. This cyclic, biphasic behavior is controlled by a specialized gated dipole circuit. ERG output autonomously stops in such a way that, across trials, a broad sample of workspace target positions is generated. When the ERG shuts off, a modulator gate opens, copying the PPC into the TPC. Learning of a transformation from TPC to PPC occurs using the DV as an error signal that is zeroed due to learning. This learning scheme is called a Vector Associative Map, or VAM. The VAM model is a general-purpose device for autonomous real-time error-based learning and performance of associative maps. The DV stage serves the dual function of reading out new TPCs during performance and reading in new adaptive weights during learning, without a disruption of real-time operation. YAMs thus provide an on-line unsupervised alternative to the off-line properties of supervised error-correction learning algorithms. YAMs and VAM cascades for learning motor-to-motor and spatial-to-motor maps are described. YAM models and Adaptive Resonance Theory (ART) models exhibit complementary matching, learning, and performance properties that together provide a foundation for designing a total sensory-cognitive and cognitive-motor autonomous system.